
UNIX

version

1.0

U

Modeling Evaluation and
Research of Lightwave
Networks

User’s Manual
and Programmer’s Guide

Authors
Frederic Mouveaux
Francois Lapeyrere

Nada Golmie

Programming
Francois Lapeyrere
Frederic Mouveaux

Guillaume Lhoste

National Institute of Standards and Technology
100 Bureau drive, Stop 8920

Gaithersburg, MD 20899-8920

World Wide Web
w3.antd.nist.gov

version

1.0

Modeling Evaluation and
Research of Lightwave
Networks

User’s Manual
and Programmer’s Guide

http://w3.antd.nist.gov

Copyright

Modeling Evaluation and Research of Lightwave Networks (MERLiN)
National Institute of Standards and Technology (NIST)

This software was developed at the National Institute of Standards and Technology
by employees of the Federal Government in the course of their official duties.
Pursuant to title 17 Section 105 of the United States Code this software is not
subject to copyright protection and is in the public domain. MERLiN is an
experimental system. NIST assumes no responsibility whatsoever for its use by
other parties, and makes no guarantees, expressed or implied, about its quality,
reliability, or any other characteristic.

We would appreciate acknowledgement if this software were used.

NIST ALLOWS FREE USE OF THIS SOFTWARE IN ITS “AS IS” CONDITION
AND DISCLAIM ANY LIABILITY OF ANY KIND FOR ANY DAMAGES
WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.

No part of this publication may be changed or disclosed into third parties.

Trademarks
Java is a trademark of Sun Microsystems, Inc.
MS-DOS, and Windows 95/98 are trademarks of Microsoft, Inc.
All other brands or products names and logo are copyrights or trademarks of their
respective companies or organizations.

Contents
CHAPTER 1 What Is MERLiN? 15

Management And Control Of WDM Networks15

Overview 16
Core 20
Plug-ins 20
Algorithms 22

Future Extensions 22

CHAPTER 2 Getting Started 23

MERLiN Installation 24

Directory Structure 25

Running A Simulation 26
Launching the daemon26
Using MERLiN plug-ins. 27
Plug-in Examples 27

Analyzing The Results 27
National Institute of Standards and Technology v

Contents
CHAPTER 3 Configuration File 31

File Structure 32
Topology 32
Action 32

Describing The Components32
Node 33
Link 35
Connection 37
Route 38
Wave 39

The Actions 40

Example File 43

CHAPTER 4 Graphical User Interface 51

Getting started 51
Installation requirements 52
How to launch the Graphical User Interface?53
Shortcut Tool Bar 54
Thumbnails Overview 55
Getting/Setting information 55
Status Bar 57

Creating a configuration 58
Creating nodes 58
Creating Links 59
Creating Connection Requests59
Deleting Nodes 59
Deleting Links 60
Deleting Connection Requests60
Simulate the configuration in MERLiN60

Opening an existing configuration61

Topology information panel 62
Non Convert Node Thumbnail Panel62
Convert Node Thumbnail Panel63
Link Thumbnail Panel 64
Connection Thumbnail Panel66
Routes Thumbnail Panel67
Algorithms Thumbnail Panel69
vi National Institute of Standards and Technology

Contents
Customizing The Document Display70
Scroll Bars 70
Zoom 70
Split Panels 70
List Management 70

Saving A Configuration File 71
Saving a topology 71
Export Performances 72

Troubleshooting 72
The interface hang when loading a configuration72
No algorithms are displayed or can be selected72

MERLiN Server is not running 73
The interface displays a warning concerning the sockets 73
The interface does not display the results 73

CHAPTER 5 Architecture Overview 77

Core 78

Plug-in 78

Algorithm 79

Communication API 79

CHAPTER 6 Component Hierarchy 81

Introduction 81

Hierarchy 82
Component 82
Math 86
Merlin 86
Network 86
Parser 87
Tool 88

CHAPTER 7 The MERLiN Grammar 89

What Is A Grammar? 90
National Institute of Standards and Technology vii

Contents
Description of the MERLiN Grammar92
Token list 92
Rules list 94

CHAPTER 8 Extending MERLiN 103

The Plug-in 103

The Algorithm 105

Integration To MERLiN 106

CHAPTER 9 k shortest path 113

Abstract 113

Input parameters 113

Output parameters114

Pseudo code 114

Structures and temporary formats115

Integration in MERLiN 115

References 115

CHAPTER 10 Tabu 117

Abstract 117

Input parameters 117

Output parameters118

Pseudo code 118

Structures and temporary formats119

Integration in MERLiN 121

References 121

CHAPTER 11 First Fit Reconfiguration 123

Abstract 123

Input parameters 123
viii National Institute of Standards and Technology

Contents
Output parameters124

Pseudo code 124

Structures and temporary formats124

Integration in MERLiN 124
National Institute of Standards and Technology ix

Contents
x National Institute of Standards and Technology

Introduction

Modeling Evaluation and Research of Lightwave Network (MERLiN) is a
Wavelength Division Multiplexing (WDM) network design and modeling
environment that allows the development and evaluation of algorithms for
wavelength assignment, routing, dynamic reconfiguration and restoration
mechanisms. MERLiN can be extended to implement network management
procedures and Quality of Service (QoS) models for WDM networks protocols.

About this Manual
This document intends to provides a detailed overview of MERLiN architecture
and its major building blocks. It is intended for the network planner who wants to
run a simulation of the protocol, the researcher who wants to know the basics about
the simulator and how to implement and run his/her own algorithm. It is also for the
application programmer who plans to integrate a new component like a plug-in.
However, the experienced programmer familiar with the concepts of MERLiN may
prefer to use the MERLiN Reference Manual, located in the www directory of the
archive to search for a specific function, and will refer to this manual only when
trying out new features. This document is also available online at http://
grabber.ncsl.nist.gov/~merlin/www.

In this manual, we assume that the reader is familiar with his/her operating system
and its conventions. Most of the sections describe how to use the simulator and
suppose that the software has already been installed. The reader is referred to the
Getting Started chapter in order to install the simulator.

MERLiN user
The first part of this document describes how to use the tool. It contains the
following sections:

What is MERLiN ? contains the basic concepts about the MERLiN architecture,
the goal of the project and future extensions.

Getting Started describes the system requirements, the installation instructions

http://grabber.ncsl.nist.gov/~merlin/www
http://grabber.ncsl.nist.gov/~merlin/www
http://grabber.ncsl.nist.gov/~merlin/www
http://grabber.ncsl.nist.gov/~merlin/www
http://grabber.ncsl.nist.gov/~merlin/www
http://grabber.ncsl.nist.gov/~merlin/www

Introduction

The Configuration File gives the file format and a description of the components
in order for the user to build his/her own configuration file.

The Graphical User Interface gives an overview of the GUI.

MERLiN Programmer
The second part that is destined for experienced programmer consists of the
following chapters:

The Architecture Overview gives the full design of the simulator including the
core, the plug-in and the algorithm interface.

The Component Hierarchy presents all the objects and the relations between
them, as they are implemented in MERLiN.

The MERLiN Grammar explains the basic concepts about how to read a
grammar, and a full description of the MERLiN grammar.

Extending MERLiN explains the use of the template file in order to create new
plug-ins and algorithms to be integrated in MERLiN.

Conventions
In order to improve readability and to keep consistent we ???? the following
conventions and notations throughout this manual:

Control+n Holding down Control and pressing
the lowercase letter n.

italic characters in a para-
graph

Emphasis of the corresponding word
in the sentence.

centered italic characters Refer to a command that needs to be
entered at the shell prompt.

Arial Bold characters at
the beginning

Reference to a title of a paragraph in
the document.

Part 1: User’s Manual

CHAPTER 1 What Is MERLiN?
 For
sec
r, a
orks

enera-

tocols
rent
n on
es, a
al for
lay-
tical
, for
od-
le.

DM)
rd-
Management And Control Of WDM Networks

Optical networking has experienced considerable progress in recent years.
example, wavelength division multiplex (WDM) transport systems with tera-bit/
capacity on a single strain of fiber is commercially available now. Howeve
number of technical challenges still remain to be addressed before optical netw
become the effective basis for a robust, agile, super-fast, and scalable next g
tion information infrastructure.

One such challenge is the development of standardized architectures and pro
for network and optical layers, appropriate at very high speeds, and for diffe
environments (e.g., local access/metro and long haul). While experimentatio
DARPA sponsored testbed will reveal useful field information about these issu
simulation tool which can provide rapid and accurate analysis is now essenti
timely resolution of the challenges of the integration of networking and optical
ers. Building such a network evaluation tool with a high degree of link and op
layer detail (which is required at high speeds such as in excess of OC-48
DWDM, and for low BER) is now feasible using physical device/component m
eling and simulation tools that are under development or commercially availab

Second, a variety of optical networks (based on SONET, WDM, and perhaps T
will coexist with legacy networks in the next generation infrastructure. Acco
National Institute of Standards and Technology 15

What Is MERLiN?

16

pti-
hose
ysi-

 also
affic
with
traffic
oS
tec-
d to

anced
 via

ech-
tool

 their
 tool

re-
rfor-
tical

 and
ptical
tion

 to
and
work.
ro-

ve-
nt
Tech-
ingly, NGI network engineering tools must incorporate existing and emerging o
cal networking technologies, which have many design features different from t
of conventional networks. For example, the distinction between virtual and ph
cal topology designs is made in WDM networks. Network engineering issues
include design at different time scales: from capacity provisioning to handle tr
growth done on a scale of months, to split-second dynamic reconfiguration,
attendant packet/connection management, as an efficient response to fast
changes and mission critical applications. Additionally, multiple services with Q
differentiation must be optimally mapped to light-paths, and parameters of pro
tion/restoration functions at optical and electronic layers must be engineere
avoid destructive interference. Furthermore, the accuracy of such tools is enh
by incorporating optical network management and control functions either
models or by interfacing with actual management and control objects.

The High Speed Network Technologies group in the Advanced Networking T
nologies proposes to develop an optical network modeling and planning
(MERLiN), which is:

1) capable of rapid evaluation of protocols and architectures, with respect to
characteristics in different environments; and 2) also a network engineering
that can inter-work with higher layer models and device level simulators.

MERLiN has a rich library of algorithms for optimum network design, dynamic
configuration, restoration, path protection, wavelength assignment, and pe
mance analysis. It is designed to permit varying levels of abstraction of the op
layer. Specifically, a higher layer network simulator can have models of links
light paths parameterized with features determined/queried by a detailed o
layer simulator; or the latter can be a pluggable module into the overall simula
of all layers. The core of the MERLiN simulation tool provides the capability
compose a physical topology, optimize virtual topology design for given traffic
end-to-end requirements, and overlay Internet Packets through the optical net
In addition to a rich library of topologies, algorithms, and protocols, the tool p
vides for the creation and evaluation of user-defined algorithms and protocols.

Overview

Modeling Evaluation and Research of Lightwave Network (MERLiN) is a Wa
length Division Multiplexing (WDM) network design and modeling environme
that is currently under development at the National Institute of Standards and
National Institute of Standards and Technology

Overview

tion
and
e are
 for

ork
ion,
 such
ed on
re dis-
sing.

 total
ffec-
ess

ough-
on-
ty of

the
ents
s. This
new
ines.
eral
uted
gement

xities
ntage
algo-
ore
mula-
tion
nology. The main purpose for this tool is to allow the development and evalua
of algorithms for wavelength assignment, routing, dynamic reconfiguration
restoration mechanisms without the expense of building a real network. Ther
two major uses for MERLiN: as a tool for WDM network planning and as a tool
WDM protocol performance analysis.

As a planning tool, a network planner can run the simulator with various netw
configurations, traffic loads to obtain statistics such as wavelength utilizat
throughput rates, blocking probabilities. It could be used to answer questions
as: what is shortest path between two nodes, how many wavelengths are utiliz
a path, will adding a new connection cause congestion. Statistics and routes a
played directly on the screen or could be logged in a data file for further proces

 As a protocol analysis tool, a researcher or protocol designer could study the
system effect of particular prototcol. For example, one could investigate the e
tiveness of various reconfiguration algorithms for WDM networks and addr
such issues as: mechanisms for dynamic provisioning, protocol overhead, thr
put. MERLiN can be easily extended to implement additional optical network c
trol and management procedures such as performance monitoring, quali
optical service provisioning, and fault detection and recovery.

The architecture of MERLiN consists of three major building blocks, namely,
core, the plug-ins and the algorithms’ library. Each block along with its compon
is a separate program that handles a specific aspect of the simulation proces
architecture provides a modular plug-and-play platform that lets users add
components such as algorithms and plug-ins and run them on different mach
The main reason for this distributed design is to facilitate the utilization of sev
computational resources (cluster of workstations, supercomputer) and distrib
data bases as needed. It addresses both scalability issues related to the mana
of thousands of nodes in large networks as well as computational comple
associated with wavelength assignment and routing algorithms. Another adva
of this design is that it allows for language/system independent plug-ins and
rithms. A programmer will be able to access MERLiN without reading the c
source code, since a standard communication interface is provided with the si
tor. Figure 1 describes the architecture of MERLiN and the communica
between the different blocks.
National Institute of Standards and Technology 17

What Is MERLiN?

18

 that
a to the
is run
on-

nks,
e and
sults
 text

algo-
out-
lug-in
es of
sical
MERLiN is based on a server/client architecture. The core is the main entity
waits for user requests, analyzes the input parameters and dispatches the dat
algorithms. It is implemented on the server’s side and acts as a daemon that
in the background. Its main task is to build the network vitual topology from a c
figuration specified by the user that includes a physical network topology (li
crossconnects, add/drop multiplexers) and a connection request matrix (sourc
destination pairs) and dispatches it to the algorithms. It then collects the re
from the algorithms and send them back to the user via the plug-in interface (in
form or GUI). There are about a dozen routing and wavelength assignment
rithms currently in the library including: shortest path, and K-shortest path for r
ing, first fit, least used, most used and Tabu for wavelength assignment. The p
interface provides a flexible user’s access to MERLiN. There are several typ
plug-ins such as simple text file, or interface to other simulator packages (phy

FIGURE 1. MERLiN Global Architecture

MERL iN
Vir tual Topology Simulator

Rout ing
Wave leng th
Ass ignment

Reconf igurat
ion

Quali ty of
Serv ice

 NIST ATM/
H F C

IP
 NS, OPNET

Phy. Layer
B -NED

Library of Algor i thms

Plug-Ins
National Institute of Standards and Technology

Overview

lso

e cru-
in is
level
ics/
igh

 their
ators,
layer, packet level simulators). MERLiN’s Graphical User Interface (GUI) is a
considered a plug-in.

Since measurements of network elements and optical signal characteristics ar
cial for developing effective management schemes for WDM networks, a plug-
currently being developed to interface with several device and component
simulators commercially available such as ARTIS/OPTSIM and Virtual Photon
BNeD. These interface modules allow the users of MERLiN to include a h
degree of link and optical layer performance characteristics and accuracy in
optical component models (crossconnects, converters, amplifiers, regener
fiber links) such as BER, crosstalk, jitter, and power level.

FIGURE 2. MERLiN GUI
National Institute of Standards and Technology 19

What Is MERLiN?

20

d on
 main

thms.
er via

le of
d col-

 text
on-
ters for

der-
ted by

ouse
en
rmat
-ins
her

ion
 on

ferent
uni-
Core

MERLiN is based on a client/server architecture where the core is implemente
the server’s side. It is acting as a daemon that is run in the background, and its
task is to prepare and dispatch the data for the simulator plug-ins and algori
The core collects the results of the simulation and sends them back to the us
the plug-in interface.

Plug-ins

A plug-in allows a user to access MERLiN and the algorithm database. The ro
a plug-in is to send user’s requests to the core over the network interface, an
lect the results once the simulation terminates.

The information exchanged between the plug-in and the core is in the form of a
script file describing the network component and topology including a list of c
nection requests between pairs of source and destination nodes, and parame
the routing, reconfiguration algorithms to run.

The file has to obey a number of syntax rules syntax in order for MERLiN to un
stand the requests and the different objects describing this file can be genera
different programs such as the Graphical User Interface or the output of another
simulator after it has undergone the necessary translation. The Graphical User
Interface help the user to build his/her own topology and requests by simple m
clicks. It will automatically generate the file and send it to MERLiN wh
requested. The plug-in interface allows the user to use the results or file fo
from other simulators and interface them to MERLiN. Through dedicated plug
it is possible to get information needed from a physical layer simulator or hig
layer simulator (like the NIST ATM/HFC simulator) and translate the informat
into the format recognized by the core. The example given in the Figure 3
page 21 is the full process description of the data exchange between the dif
simulator entities in order to make a physical layer simulator (OptSim) comm
National Institute of Standards and Technology

Overview

tion

 on
work
gy)

sted.
h
 the
ave-
cate with MERLiN and routes and allocate wavelength given a list of connec
requests.

The script file generated is sent to the communication API of MERLiN (based
the UNIX socket interface) and is transported to the core by the physical net
cable. After building its internal data structure (i.e. the network virtual topolo
the core calls the algorithm and sends its newly created data structure. The Routing
algorithm takes the virtual topology and finds routes to the connections reque
Then the Wavelength Assignment algorithm tries to find an available wavelengt
for the pre-determined route. The algorithms return to MERLiN the results of
simulation by modifying the input data given to them and adding routes and w

FIGURE 3. Data Exchange in MERLiN

Modi f ied

MERL iN

Rout ing

Wavelength
Ass ignment

Virtual
Topo logy Lambda

Phys. Layer
OptS im

Physical
Topo logy

B E R

Virtual
Topo logy
National Institute of Standards and Technology 21

What Is MERLiN?

22

pera-
so far

 that
tion
lengths to the traffic request. The results can be displayed in the Graphical User
Interface as shown in Figure 4 on page 22.

Algorithms

The library of algorithms contains several classes depending on the type of o
tion the simulator is asked to perform. Four categories have been designed
and they include Routing, Wavelength Assignment, Reconfiguration, and Restora-
tion. Each category contains a list of algorithms. It is important to understand
the algorithm database is tightly associated with MERLiN’s internal representa
of the network topology.

Future Extensions

FIGURE 4. Example of results in the Graphical User Interface

File Edit Topology Algorithm Control He lp
National Institute of Standards and Technology

CHAPTER 2 Getting Started
/Irix,
dows
build
miss-
pter,
 in

re

 to

in

 a
MERLiN runs on UNIX systems and has been tested under Silicon Graphics
Sun/Solaris, and PC/FreeBSD environments. There are no MS-DOS or Win
95/98 versions available at this time. Some libraries are required in order to
the executable code associated with the simulator. If you any problems due to
ing library files, the user is advised to his/her system administrator. In this cha
the reader will learn the basic features of MERLiN including installation tips
order to get familiar with the MERLiN tool and get started.

MERLiN Installation gives detailed instruction on how to install the softwa
archive.

Directory Structure is an overview of the archive directory tree and is useful
understand the organization of the different modules of MERLiN.

Running A Simulation provides an example of how to use the text plug-in
order to ask MERLiN to launch some of algorithms located in the database.

Analyzing The Results describes the interpretation of simulation results of
simulation returned by MERLiN.
National Institute of Standards and Technology 23

Getting Started

24

ress

fer to
or
 the
nd in
the

l be
apter.
 go in

-
 con-
ation
vice
ns of

rrent

ing

al-
ur

eral
MERLiN Installation

In order to install the simulator on a given machine, you first have to decomp
the archive. This can be done using a combination of two utilities tar and gzip. If
you encounter any errors in the installation process of the software, please re
the Frequently Asked Questions section and check with your system administrat
that both the utilities and libraries are correctly installed on your machine. In
directory where the compressed archive is located, type the following comma
your shell, where X and Y are the version number and the revision number of
software package respectively:

gzip -cd merlin++_vX.Y.tar.gz | tar xf -

At this point, you should have the directory tree structure. This structure wil
presented in details later in the chapter. presented in the next point of this ch
In order to build the executable codes needed to run a simulation, you have to
the source directory. Please enter at the shell prompt the following command:

cd merlin++_vX.Y/src

Then you need to use the configure script in order for MERLiN to detect the com
ponents installed on your system and needed in the compilation process. The
figure script allows the user to choose several option such as the destin
directory for the binaries, or the debug mode for developers only. For the no
user, the use of this script is straightforward. More details concerning the optio
the script can be found in the section Configure Script in the Appendix. For a quick
installation, no options need to be selected any options. At the prompt in the cu
directory type :

./configure

If no errors occur, you can compile the entire application by entering the follow
command at the prompt:

make ; make install

This will compile all the modules of MERLiN and install the software in the inst
lation directories. In order for the core of MERLiN to find the algorithms on yo
computer, you must specify an environment variable named MERLINPATH. This
variable must point to your installation root directory. This can be done in sev
National Institute of Standards and Technology

Directory Structure

shell
most
line at

asy
 cre-
llation

 fol-
ways depending on your shell. We recommend to set this variable in your
resource file (.tcshrc, .bashrc, etc.). Here is a way to do it under two of the
commonly used shells. Just edit your resource file and add the corresponding
the end:

under TCSH setenv MERLINPATH /home/my_local_directory/merlin++

under BASH declare -x MERLINPATH="/home/my_local_directory/merlin++"

After restarting a new shell, you are now ready to use MERLiN.

Directory Structure

The MERLiN archive is organized in several parts in order to allow for e
retrieval and efficient storage of the information. Some of the directories are
ated when the archive is decompressed, and others are created by the insta
process. After installing the simulator in a directory, the archive contains the
lowing main tree of directories:

merlin++ Root directory
Created by the installation process

algorithm Binary code of the algorithms
routing Routing algorithm class
wavelength Wavelength algorithm class
reconfiguration Reconfiguration algorithm class
qos Quality of Service algorithm class

bin Binary code of the daemon
lib Merlin development library
plug-in Plug-ins

Created when decompressing the archive

www Reference manual of the classes (HTML format)
example Some topologies, and examples of MERLiN files
src Sources of Merlin, Plug-ins and algorithms

algorithm Sources of all the algorithms implemented
routing Routing algorithm class
wavelength Wavelength algorithm class
reconfiguration Reconfiguration algorithm class
qos Quality of Service algorithm class

merlin Sources of MERLiN core
National Institute of Standards and Technology 25

Getting Started

26

table

ere
g the
til a

ug-in,
sim-
ow-

soft-
g the
e to
components Components used in the topologies
math Standard types library
merlin Core sources
network Network API
parser Input file parser
tool Development tool library

plug-in Sources of the Plug-ins
template Templates of the communication API and Makefiles

Running A Simulation

After completing the installation process, you now ready to run a simulation.

Launching the daemon

The daemon is the core of MERLiN. In order to use it, just launch the execu
file that is located in the bin directory of this archive.

./merlin

It is important to set correctly the MERLINPATH variable on the machine wh
you are running the daemon. Please refer to the previous section concernin
installation of the simulator in order to set the variable. The daemon waits un
plug-in connects to it, and then based on the requests specified in the pl
launch the appropriate algorithm. If you only want to check the version of the
ulator that you are running, launch the daemon with the -V option. Try the foll
ing command in your shell:

 ./merlin -V

This will display a message indicating the version and revision number of the
ware, and the operating system on which it has been compiled. After displayin
message, the core of MERLiN stops. If you want to run a simulation, you hav
launch the daemon again without the -V option.
National Institute of Standards and Technology

Analyzing The Results

a
uired.

 stan-

on
rame-

le,
as fol-

at is

 and
ave a
Using MERLiN plug-ins.

The plug-ins are located in the plug-in directory of the archive. They all require
basic set of parameters and for some plug-ins additional parameters are req
The port number requested by the application is the port numbered 2507. This port
must be available in order for a normal operation. The set of parameters for a
dard plug-in is:

Plug-in Examples

The plug-in KILL is a basic program that allows you to end remotely the daem
when this one is running on a distant machine. It only takes the basic set of pa
ters and can be launched as follows:

kill localhost 2507

Another plug-in is the MERLiN text file application that takes a configuration fi
sends it to the daemon and gets back the results. The use of this plug-in is
lows:

merlin localhost 2507 input_file.mrl output_file.mrl

Try the last one if you want to run a simulation based on a configuration th
already in the example database.

Analyzing The Results

The result of a simulation is a text file containing a description of the topology
parameters values characterizing the algorithms. Not all the parameters h
meaning for every type of algorithm. These parameters are the following:

Plug-in name Daemon’s machine Port number [Extra parameters]

FIGURE 5. Plug-in parameters
National Institute of Standards and Technology 27

Getting Started

28

oute.
ced-

ave-
r a

other
en by

ength

thm
 fol-
AVERAGE_HOPS

For a routing algorithm, this is the average number of hops of each computed r
For the other type of algorithm, the value is either 0 or the value taken by a pre
ing routing algorithm.

USED_WAVELENGTH

This the total number of wavelength used in the wavelength allocation. An w
length allocation algorithm tend to minimize this value. It has no meaning fo
routing algorithm and take the value 0.

THROUGHPUT

For a routing algorithm, this is the total number of established routes. For the
types of algorithm, it has no meaning and the value is either 0 or the value tak
a preceding routing algorithm.

UTILIZATION

For a routing algorithm, it has no meaning and takes the value 0. For a wavel
allocation algorithm this is given by the following formula:

total number of lightpath / number of links in the topology

BLOCKING_PROBABILITY

For a routing algorithm, this is the number of connections for which the algori
did not find a route. For a wavelength allocation algorithm, this is given by the
lowing formula :

total number of connections requested - number of established routes.

WAVELENGTH_REUSABILITY

for a wavelength allocation algorithm this is given by the following formula :

number of established routes / number of colors used.
National Institute of Standards and Technology

Analyzing The Results

sults.

, this
COMPUTATION_COMPLEXITY

This is the time (in seconds) used by the algorithm in order to compute the re

COST

The cost is computed by a cost function located in each route object. Currently
function return the number of links used by the route.

WAVELENGTH_AVAILABILITY

This parameter is currently not used.
National Institute of Standards and Technology 29

Getting Started

30
 National Institute of Standards and Technology

CHAPTER 3 Configuration File
 the
er for
me
nd if
ming
 are

-

nd

n a

e

This chapter describes the syntax of a MERLiN configuration file. It gives to
user the possibility to create his own topology and connection requests. In ord
MERLiN to work the user must feed the core with a script file containing so
instructions. The core parses the script in order to retrieve the information, a
the syntax is correct, performs the computation of the algorithms. Program
techniques that allow the user the user to modify the syntax of the script file
beyond the scope of this section and will be described in more details in Part2,
Chapter 3: MERLiN’s Grammar. It is important to note that the syntax of a MER
LiN script file is close to C programming language syntax.

The File Structure describes the required main components of a script file.

Describing The Components introduces the component used in a topology a
they descriptive parameters in the script file.

Describing The Actions describes how to make a request for an algorithm i
script file.

Example provides a working example of a MERLiN file that is found in th
archive.
National Institute of Standards and Technology 31

Configuration File

32

ile

e dif-

n. It
as fol-

revi-
 the
on the

al
tego-
File Structure

In order for the MERLiN core to build its internal structure, a MERLiN script f
MUST include two major components:

• A TOPOLOGY,

• And an ACTION block.

Onces these two blocks are defined, each must contains the description of th
ferents elements composing the user’s request.

Topology

The topology part contains the description of the network virtual configuratio
describes the nodes, the links and the routes. The topology block is declared
lows:

TOPOLOGY
{
}

Action

The action part contains the description of the algorithms to launch using the p
ously described network topology. The description of an algorithm contains
algorithm’s name, the machine location, and a set of parameters depending
type of algorithm. The action part is declared as follow:

ACTION
{
}

Describing The Components

The TOPOLOGY part contains the definition of all the components of the virtu
network. Each component type is grouped into a block. There are six block ca
ries:

• NODE,
National Institute of Standards and Technology

Describing The Components

is:

es of

rs) and
 The

s:

s:
• LINK,

• CONNECTION,

• ROUTE,

• WAVE.

Node

The node block groups all the nodes of the user’s virtual topology. The syntax

[NODE_BLOC]
{

;
}

Inside this block, the characteristics of the nodes must be defined. Two typ
nodes are present in MERLiN:

• CROSS-CONNECT CONVERT,

• CROSS-CONNECT NON-CONVERT.

Each one of these types of node contains a set of attributes (or Qos paramete
a switch table indicating how the wavelengths are switched at the nodes.
attributes of a node are:

BER Bit error rate generated by the node. It is a float value.

DELAY Delay generated by the node.It is a float value.

JITTER Jitter generated by the node.It is a float value.

BW Bandwidth available on this node. It is a float value.

OP_TYPE This flag indicates if the node is used as protection or as normal.
It can take two values: NORMAL or PROTECTION.

MODE This flag indicates if the node is used or not. It can take two value
USED or NOT_USED

STATUS This flag indicates if the node is failed or not. It can take two value
FAILED or WORKING.

SWITCH_TABLE Every line in this table represents a connection.
When a connection is established between two nodes, a
National Institute of Standards and Technologyy 33

Configuration File

34

ns of
onent
line is created in the switch table of each node crossed
by this connection.

Here is an example of two different nodes declaration inside a node block:

[NODE_BLOC]
{

OXC_CONVERT OXC1
{

BER 0.2 ;
DELAY 0.1 ;
JITTER 0.05 ;
BW 155 ;
OP_TYPE PROTECTION ;
MODE NOT_USED ;
STATUS WORKING ;
SWITCH_TABLE
{
;
}

}
OXC_NON_CONVERT OXNC1
{

BER 0.1 ;
DELAY 0.2 ;
JITTER 0.07 ;
BW 135 ;
OP_TYPE NORMAL ;
MODE NOT_USED ;
STATUS WORKING ;
SWITCH_TABLE
{
;
}

}
}

Another way to declare nodes is to use a default statement and short definitio
nodes. A default statement describes the default values to use in the comp
declaration.

DEFAULT OXC_CONVERT
{

National Institute of Standards and Technology

Describing The Components

ses

 and
 link

te-
BER 0.2 ;
DELAY 0.1 ;
JITTER 0.05 ;
BW 155 ;
OP_TYPE PROTECTION ;
MODE NOT_USED ;
STATUS WORKING ;
SWITCH_TABLE
{
;
}

}
OXC_CONVERT OXC1 ;
OXC_CONVERT OXC2 ;

The attributes of nodes OXC1 and OXC2 defined with the short definition u
values sat by the settings.

Link

The link is a trunk of fiber where each fiber contains a number of wavelength.
lambdas connecting two different nodes. Each link MUST be declared inside a
block and the syntax of a such block is as follows:

[LINK_BLOC]
{

;
}

The following attributes are used to describe a link:

DISTANCEPhysical length of the link. Its value is a float.

NB_AMPLIFIERNumber of amplifiers along the link. Its value is an integer.

NB_REGENERATORNumber of regenerators along the link. Its value is an in
ger.

FIBER_RATIO Number of fibers composing the link. Its value is an integer.

LAMBDA_RATIO Number of wavelengths per fiber. Its value is an integer.

BER Bit error rate generated by the link. Its value is a float.

DELAY Delay generated by the link. Its value is a float.
National Institute of Standards and Technologyy 35

Configuration File

36

l.

is
JITTER Jitter generated by the link.Its value is a float.

BW Bandwidth available on this link.Its value is a float.

OP_TYPE This flag indicates if the link is used as protection or as norma
It can take two values: NORMAL or PROTECTION.

MODE This flag indicates if the link is used or not. It can take two
values: USED or NOT_USED.

STATUS This flag indicates if the link is failed or not. It can take two
values: FAILED or WORKING.

LAMBDA_LIST This list contains the wavelengths which have not the same
state, mode or operational type as the the link. Typically,
the wavelengths used by a connection or failed when the link
working are in this list.

Here is an example of the declaration of a link declaration:

[LINK_BLOC]
{

LINK OXC1_OXC2 OXC1 OXC2
{

DISTANCE 2 ;
NB_AMPLIFIER 10 ;
NB_REGENERATOR 10 ;
FIBER_RATIO 10 ;
LAMBDA_RATIO 4 ;
BER0.4 ;
DELAY 0.3 ;
JITTER 0.05 ;
BW 135 ;
OP_TYPE NORMAL ;
MODE NOT_USED ;
STATUS WORKING ;
LAMBDA_LIST
{
2 NORMAL NOT_USED FAILED ;
3 NORMAL USED WORKING ;
12 PROTECTION NOT_USED FAILED ;
}

}
}
Similar to a node declaration a link can be declared using default settings:
National Institute of Standards and Technology

Describing The Components

s the

ished
DEFAULT LINK
{

DISTANCE 2 ;
NB_AMPLIFIER10 ;
NB_REGENERATOR10 ;
FIBER_RATIO 10 ;
LAMBDA_RATIO 4 ;
BER 0.4 ;
DELAY 0.3 ;
JITTER 0.05 ;
BW 135 ;
OP_TYPE NORMAL ;
MODE NOT_USED ;
STATUS WORKING ;
LAMBDA_LIST
{

10 NORMAL NOT_USED FAILED ;
33 NORMAL USED WORKING ;
42 PROTECTION NOT_USED FAILED ;

}
}
LINK OXC1_OXC2 OXC1 OXC2 ;

In this example, link OXC1_OXC2 connects nodes OXC1 and OXC2 and take
attributes of the default declaration.

Connection

A connection is defined in a connection block. It represents a lightpath establ
between two nodes. A connection is associated with a ROUTE in MERLiN as it is
described in the Part2, Chapter 3: Component Hierarchy. A connection block is
defined as follows:

[CONNECTION_BLOC]
{

CONNECTION C1
{

START OXC1 ;
DEST OXC2 ;
DISTANCE 3 ;
BER 0.4 ;
National Institute of Standards and Technologyy 37

Configuration File

38

trictive

and

 by a
des
ucture
ese
rithm.

l way
some
 The

the
DELAY 0.3 ;
JITTER 0.04 ;
BW 120 ;

}
}

The attributes of a connection are the starting and ending node and some res
parameters used for the QoS:

START The source node name.

DEST The destination node name.

DISTANCE The distance requested for this connection between the source
destination nodes.

BER The bit error rate requested for this connection.

DELAY The delay requested for this connection.

JITTER The jitter requested for this connection.

BW The bandwidth requested for this connection.

No default tag has been defined for this type of block.

Route

A route is declared in the route request block. Usually, a route is generated
routing algorithm for a given connection. A route consists of all the link and no
that a lightpath traverses between a source and destination pair. The route str
in MERLiN contains a list of nodes, links and their attributes. Note that th
attributes are output parameters since they are returned by the routing algo
The attributes of a route are as follows:

The meaning of a such structure is te determine if there is a possible physica
to cross the network between two nodes. It contains a list of nodes and
attributes calculated from the nodes and the links crossed by the route.
attributes of a route are:

CONNECTION The name of the associated connection.

DISTANCE The physical distance of the route computed as the sum of
distances of the links on the route.
National Institute of Standards and Technology

Describing The Components

his
y

the

nd

en a
 that is
used
BER Bit error rate; its value is calculated from the ber of the
links and the nodes crossed by the route. It is computed as
 follows:

DELAY end-to-end delay between the source and destination pair. T
 delay is the sum of the links propagation time and any dela
 incurred at the nodes.

JITTER The jitter is derived from the jitter of the nodes and links on
 route. It is computed as follows:

BW The bandwidth calculated from the bandwidth of the nodes a
the links on the route. It is computed as follows:

The declaration in the script file of a route is as follows:

[ROUTE_BLOC]
{

ROUTE ROUTE_1
{

CONNECTION OXC1_OXC2 ;
DISTANCE 3 ;
BER 0.4 ;
DELAY 0.3 ;
JITTER 0.04 ;
BW 120 ;
NODE_NAME_LIST OXC1 OXC3 OXC4 OXC2 ;

}
}

Wave

A wave is declared in the wave block. For each lightpath established betwe
source and destination node, there needs to be an associated wavelength
defined on each link traversed.A wave object indicates which wavelength is
on each link. The attributes of a Wave are:

ROUTE The route associated to this ligthpath.

WL_ASSIGNED_LIST The list of the wavelength assigned to this ligthpath.

In the list of wavelength assigned, the structure is reduced to two fields:

LINK The name of the link where the lambdas are used
National Institute of Standards and Technologyy 39

Configuration File

40

gy,
Each
 the

 a

he

 of
LAMBDA The list of lambdas used by the ligthpath on the
previously declared link.

A wave object is declared as follow:

[WAVE_BLOC]
{

WAVE
{

 ROUTE ROUTE_1 ;
WL_ASSIGNED_LIST
{
{
LINK OXC1_OXC3 ;
LAMBDA2 ;
}
{
LINK OXC3_OXC4 ;
LAMBDA2 ;
}
{
LINK OXC4_OXC2 ;
LAMBDA 2 ;
}
}

}
}

The Actions

In order for MERLiN to apply an algorithm to the previously described topolo
the user needs to indicate in the action block a list of algorithms to launch.
action tag is different depending on the action performed, but they all obey
same syntax rules for the attributes:

ACTION It is a tag that contains a description of the action and
set of parameters.

ALGO_LOCATION This attribute has two values separated by a space. T
first is the IP address (or name) of the machine where
the daemon is running, and the second is the location
the algorithm, relative to the environment variable
National Institute of Standards and Technology

The Actions

et

ting
MERLINPATH. The concatenation of the environment
variable MERLINPATH and algo_location should give
an absolute path. This path is used by the daemon to
locate the algorithm, so it is absolutely necessary to s
the MERLINPATH variable correctly(see Getting
Started).

LIST OF PARAMETERSEach algorithm uses a set of parameters, that is
different depending on the type of the algorithm.

Here is an example for the CREATE_ROUTE action (used to launch the rou
algorithms):

ACTION
{

CREATE_ROUTE
{

ALGO_LOCATIONlocalhost/algorithm/routing/
shortest_path ;

CONNECTION C1
{
START OXC1 ;
DEST OXC2 ;
DISTANCE 3 ;
BER 0.04 ;
DELAY 0.5 ;
JITTER 0.1 ;
BW 3.5 ;
}

}
}

Here is the list of all possible actions:

CREATE_ROUTE

ASSIGN_WAVELENGTH

RECONFIGURATION

ADD_CONNECTION
National Institute of Standards and Technologyy 41

Configuration File

42

mples
REM_CONNECTION

LINK_FAILURE

NODE_FAILURE

Some algorithms have been developed for the first three actions. Here are exa
showing how to declare them:

CREATE_ROUTE:

 CREATE_ROUTE {
 ALGO_LOCATION localhost /algorithm/routing/shortest_path
;

 CONNECTION C2 {
 START OXC1 ;
 DEST OXC3 ;
 DISTANCE 5 ;
 BER 6 ;
 DELAY 7 ;
 JITTER 8 ;
 BW 9.3 ;
 }
 }

ASSIGN_WL

 ASSIGN_WL {
 ALGO_LOCATION localhost /algorithm/wavelength/tabu ;
 CONNECTION C2 ;
 }

RECONFIGURATION

 RECONFIGURATION {
 ALGO_LOCATION localhost /algorithm/reconfiguration/
first_fit_reconf
 CONNECTION C2 {
 START OXC1 ;
 DEST OXC3 ;
 DISTANCE 5 ;
 BER 6 ;
 DELAY 7 ;
 JITTER 8 ;
 BW 9.3 ;
National Institute of Standards and Technology

Example File
 }
 CONNNECTION_MAX 40 ;
 MEAN_CONNECTION_SET 5 ;
 }

Example File

A mesh network
(10 nodes, 13 bidirectional links)
TOPOLOGY {
 # All the nodes are considered the same
 [NODE_BLOC]
 {
 DEFAULT OXC_CONVERT
 {
 BER 0.2 ;
 DELAY 0.1 ;
 JITTER 0.05 ;
 BW 155 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 SWITCH_TABLE {
 ;
 }
 }
 OXC_CONVERT OXC1 ;
 OXC_CONVERT OXC2 ;
 OXC_CONVERT OXC3 ;
 OXC_CONVERT OXC4 ;
 OXC_CONVERT OXC5 ;
 OXC_CONVERT OXC6 ;
}

#LINK BLOC

 [LINK_BLOC]
 {
 DEFAULT LINK {
 DISTANCE 20 ;
National Institute of Standards and Technologyy 43

Configuration File

44
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC1_OXC2 OXC1 OXC2 {
 DISTANCE 2 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC1_OXC4 OXC1 OXC4 {
 DISTANCE 5 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
National Institute of Standards and Technology

Example File
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC1_OXC3 OXC1 OXC3 {
 DISTANCE 16 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC1_OXC6 OXC1 OXC6 {
 DISTANCE 9 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC2_OXC3 OXC2 OXC3 {
 DISTANCE 3 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
National Institute of Standards and Technologyy 45

Configuration File

46
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC2_OXC4 OXC2 OXC4 {
 DISTANCE 2 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC3_OXC2 OXC3 OXC2 {
 DISTANCE 4 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC4_OXC2 OXC4 OXC2 {
National Institute of Standards and Technology

Example File
 DISTANCE 2 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC4_OXC3 OXC4 OXC3 {
 DISTANCE 10 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC4_OXC5 OXC4 OXC5 {
 DISTANCE 8 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
National Institute of Standards and Technologyy 47

Configuration File

48
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC5_OXC3 OXC5 OXC3 {
 DISTANCE 9 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 LINK OXC6_OXC2 OXC6 OXC2 {
 DISTANCE 10 ;
 NB_AMPLIFIER 2 ;
 NB_REGENERATOR 7 ;
 FIBER_RATIO 2 ;
 LAMBDA_RATIO 3 ;
 BER 0.4 ;
 DELAY 0.2 ;
 JITTER .05 ;
 BW 135 ;
 OP_TYPE NORMAL ;
 MODE NOT_USED ;
 STATUS WORKING ;
 LAMBDA_LIST {
 ;
 }
 }
 }
 [CONNECTION_BLOC]
 {

 ;
 }
National Institute of Standards and Technology

Example File
 [ROUTE_BLOC]
 {
 ;
 }

 [WAVE_BLOC]
 {
 ;
 }
}

ACTION {

 CREATE_ROUTE {
 ALGO_LOCATION localhost /algorithm/routing/shortest_path
;

 CONNECTION C2 {
 START OXC1 ;
 DEST OXC3 ;
 DISTANCE 5 ;
 BER 6 ;
 DELAY 7 ;
 JITTER 8 ;
 BW 9.3 ;
 }
 }

 ASSIGN_WL {
 ALGO_LOCATION localhost /algorithm/wavelength/tabu ;
 CONNECTION C2 ;
 }
 }
National Institute of Standards and Technologyy 49

Configuration File

50
 National Institute of Standards and Technology

CHAPTER 4 Graphical User Interface
r to
rfor-
e ref-

and
.

 a
ER-

ed

,

y

Getting started

The Graphical User Interface (GUI) of the MERLiN tool has been built in orde
help the user creating small configuration files and quickly analyze the pe
mance results of the algorithms. This section provides the user with a complet
erence of the possibilities offered by the GUI.

Getting started gives basic instructions concerning the installation process
the requirements in order to run the interface, and an overview of the interface

Creating a configuration provides some information in order to quickly create
topology, and run simulation of the configuration and algorithm selected in M
LiN,

Open an existing configuration describes an opening file and its associat
dialog box,

Topology information panel explains manipulating of the display information
and describes all the fields of the information panels,

Customizing the document display gives basic tips in order to use the displa
or make it more readable,

Saving a configuration file analyzes scripts by saving or exporting results.
National Institute of Standards and Technology 51

Graphical User Interface

52

g the
be

 and
has

 the

sing
ent of
. The
1.1.7,
 1.1.1
 later
enta-
ion.
 from

talled
ere
ro-
nix
 cur-

cess

you
e the
 in

ts
Installation requirements

The GUI has been developed as a plug-in. It is an external application usin
resources offered by the MERLiN tool. Thus the MERLiN server should
installed on your local computer, or on a distant machine in order to perform
retrieve the information from a simulation. Please make sure that MERLiN
been correctly installed by following the installation procedures explained in
corresponding Chapter of this user’s manual.

In order to be compatible with most platforms, the application is developed u
the Java technology and compilers. You have to make sure that every compon
the Java compiler and development kit are present on your local computer
GUI has been developed and tested under the Java Development Kit (Jdk)
and the compliance has not been tested with later versions. The Java Swing
package is also needed in order to run the interface, and the compatibility with
versions is not ensured as well. Please refer to the specific installation docum
tion of these products in order to get the installation and compatibility informat
For convenience, you should be able to find some information and downloads
the following URL:

Java Development Kit - http://java.sun.com/products/jdk
Java Swing - http://java.sun.com/products/jfc

First, make sure that all the components needed to build the interface are ins
and working. If you are running the Unix version, the GUI should be located wh
all the plug-ins have been installed (when performing the MERLiN installation p
cess). To run the GUI under Windows, download the directory gui from the u
version to your local computer. Once this operation is performed, change your
rent directory to the GUI directory and check if the file “Gui.class” and “Merlin-
GUI.jar” are present. If any of these file are missing then the installation pro
will fail.

If you have downloaded the entire MERLiN archive on your local PC, and
have the Jdk and Swing installed on your Windows system, you can compil
GUI directly at the MS-DOS prompt. Go to the GUI source directory located
“merlin++/src/plug-in/gui” and enter:

Batch\Comp

This will compile the GUI and if no error occurs, it will make all the objec
required to run the application on your PC.
National Institute of Standards and Technology

http://java.sun.com/products/jdk
http://java.sun.com/products/jfc
http://java.sun.com/products/jdk

Getting started

ieve
ail-
le
 the
 run-
m-

the
he IP

 your
solve
ll the
ppear
How to launch the Graphical User Interface?

The MERLiN daemon must be running when launching the GUI in order to retr
the list of algorithms available in the database. If the MERLiN server is not av
able, the GUI will still be able to work but in a limited version. You will not be ab
to send any requests, and to simulate any configuration file. You must be in
directory where the GUI has been installed, and if the daemon is installed and
ning properly, you can enter in your shell or MS-DOS prompt the following co
mand:

java Gui servername

where “servername” can be either localhost if you are running the server on
same machine than the interface, or a distant machine’s name, or even t
address of the MERLiN server machine. Examples, java Gui localhost, java Gui
myhost.nist.gov, java Gui 149.140.60.5. If the GUI can not reach the MERLiN
server for any reason, you will get a warning message or an error message in
shell or MS-DOS prompt. Please see the troubleshooting section in order to
the common problems encountered by the users. After Java has initialized a
components and objects of the interface, the interface presented in Figure 6 a
on your screen.

FIGURE 6. Graphical User Interface overview

In form ation P ane l 1

G raph ic P ane l

In form ation P ane l 2

S hortcu t Tool BarM enu B ar

Sta tus B ar
National Institute of Standards and Technology 53

Graphical User Interface

54

. The
e dis-
n in

f one
Shortcut Tool Bar

The shortcut tool bar is a set of icons that helps to do common tasks quicker
different tasks have been divided into four categories: the file management, th
play settings, the topology creation and the component information as show
Figure 7. Most of the icons are exclusive in their own category, and the use o
removes the selection of the others.

File management

Display Settings

Topology Creation

FIGURE 7. Shortcut Tool Bar

Erase the current topology, and start over from a blank
screen. This shortcut is equivalent to the menu File>New.

Open and load an existing document. This shortcut is equiv-
alent to the menu File>Open.

Save the current configuration. This shortcut is the equiva-
lent of the menu File>Save.

Zoom In the current displayed topology. This shortcut cor-
respond to the Display>Zoom In menu.

Zoom Out the current displayed topology. This shortcut is
identical to the Display>Zoom Out menu.

Create a new Cross Connect with wavelength conversion.
Same as the menu Edit>Create>Cross Connect Convert.

Add a new Cross Connect without wavelength conversion.
Equivalent to Edit>Create>Cross Connect Non Convert.
National Institute of Standards and Technology

Getting started

 order
sults

infor-
ro-

s
pare

 in
de in
s, left
Component Information

Thumbnails Overview

The thumbnails are located in the information panels. These are designed in
to observe and modify the information of the components, algorithms and re
currently displayed in the interface.

As presented in the Figure 8, each thumbnail is clickable and displays some
mation on the configuration. A full description of each field and its meaning is p
vided in the Topology Information Panel section of this Chapter. Two thumbnail
panels have been implemented in the interface in order for the user to com
related information of the current topology.

Getting/Setting information

Use the “Information” shortcut icon in order to select the components to display
the thumbnail panels. Once the information button is selected, click on one no
order to add it to the list of selected nodes. If you want to select several node

Create a new Link between two nodes. Equivalent to the
menu Edit>Create>Link.

Create a new Connection request between two nodes.
Equivalent to the menu Edit>Create>Connection.

Node selection. Select and allow the user to move nodes
inside the topology displayed.

Node information. Select and add in the information panel
all the nodes inside the boundary box drawn. It will add
automatically in the other panel the dependencies of the
node (like the associated links, connections,...)

FIGURE 8. Thumbnails overview
National Institute of Standards and Technology 55

Graphical User Interface

56

 box

umb-
 and
ouse
have
it will

 the
ed in
click on a blank portion of the graphical zone, and drag the mouse. A red
should appear following the mouse movements as shown in Figure 9.

The selected components like the nodes and links appear in their respective th
nail panels. To change the information of a field, display the thumbnail panels
go to the line associated with the component to edit. Then click with the left m
button on the field, and enter a new numeric value or name. Some fields
restricted choices that will appear as a list of choices. Select one of them and
be the new value for the field.

Another way to get some information on the nodes is to use the “Properties”
option of the floating menu over a node. Select a node of the topology with
mouse pointer and click on the right mouse button. The floating menu present
Figure 10 will appear.

FIGURE 9. Information selection on components

FIGURE 10. Node Properties
National Institute of Standards and Technology

Getting started

ng
t be

e bot-
n the

ce is
nent
Once the “Properties” option is selected, another window will appear displayi
the characteristics of the node. Each field is for information only and can no
changed. Figure 11 represents a typical properties window for a node.

This window can be iconified for later use or dismissed when clicking on the “Ok”
button (or when closing the window).

Status Bar

Each time you are doing an action in the interface a message is displayed at th
tom of the window, in the status bar. This bar is divided in two parts as shown i
Figure 12.

The action information is the result of an action or the type of action the interfa
expecting. The topology information is used in order to determine the compo

FIGURE 11. Properties Window for a Node

FIGURE 12. Status Bar Overview

Topology informationAction information
National Institute of Standards and Technology 57

Graphical User Interface

58

ine

n the
. This
g it.

 Con-
s on

node.
ialog

ot be
it and
eate it.
g on
by
nd-
that is being pointed to by the mouse. This is useful in order to quickly determ
the name of a node when creating a link or connection request.

Creating a configuration

In order to build a topology, it is recommended to first place several nodes o
graphical display, and then connect them and create requests for connections
section explains step by step the process of building a configuration and editin

Creating nodes

Select the type of node you want to create using the menu Edit>Create>Cross
nect Convert or Edit>Create>Cross Connect Non Convert, or the similar icon
the shortcut tool bar. Then click on the graphical zone in order to place a new
Each time a node is created, the interface will prompt you for a name in a d
text box as shown in the Figure 13.

It is important to choose carefully the name of your node, as this one can n
changed later. In order to change the name of a node, you will have to delete
consequently its associated structures (links, connections, routes,...) and recr
Once a node is created, you can move it within the graphical zone by clickin
the “Selection” arrow icon of the shortcut tool bar, or modify the different fields
clicking on the “Information” icon and change the fields values in the correspo
ing thumbnail (See Getting/Setting Information in this Chapter). If at the prompt for
a name you finally do not want to create the node, click on the Cancel button or
close the window and no changes will be applied to the topology.

FIGURE 13. Node Name Prompt
National Institute of Standards and Technology

Creating a configuration

hen
mpt
 and
r on

 or
uests

con in
t the
status
played

-
th the

ical
ed are
bnail

 using
Creating Links

Select the menu Edit>Create>Link or the link icon in the shortcut tool bar, t
click on the source node for the link. You will note that the status bar will pro
you for a destination node. The last step is to select a destination for the link
click on it. A link going from the source to the destination node should appea
the screen.

Creating Connection Requests

When the full topology is created, and if you wish MERLiN to compute routes
find wavelength assignment, you have to first create some connection req
between nodes.

Select in the menu Edit>Create>Connection or use the dedicated connection i
the shortcut tool bar. The selection is similar to a link as you have to selec
source node first, and then a destination node by clicking on each one. The
bar indicates the node selected. When created, the connection request is dis
in the connection thumbnail panel.

Deleting Nodes

To delete a node, you have to be in the “Selection” mode accessible from the short
cut tool bar. Place the mouse on the node you want to delete and right click wi
right mouse button. The floating menu presented in the Figure 14 will appear.

Selecting the Delete option of this menu will remove the node from the graph
zone. When a node is deleted, all the resources and structures associat
destroyed. The links associated are removed from the screen and the thum
panels, and connections using the node are removed from the lists. The routes
the node are no longer valid.

FIGURE 14. Delete Nodes
National Institute of Standards and Technology 59

Graphical User Interface

60

ct a
to the

rma-
 a list
 line
back-
in the
s you

with
. The

cting
t all
inter.

nail
ct one

ted
rec-

 in

hoose
ER-
Deleting Links

The deletion of a link alone is done in the link thumbnail panel. In order to sele
link and display it in the panel, you have to select at least a node connected
concerned link. Click on the “Information” icon of the shortcut tool bar and click
on a node connected to the link you want to remove. Then go to one of the info
tion panel and choose to see the link thumbnail panel where you should see
containing the link that has to be removed. Left click with the mouse on the
you want to remove, and maintain the mouse button a few seconds until the
ground color of the line changes. You are also allowed to select several lines
table by maintaining the left mouse button and drag the mouse over the line
want to delete. Then click on the “Delete Link(s)” button on top of the thumbnail
panel, and the links will disappear from the list. All the structures associated
the links selected will be removed such as the calculated routes using them
nodes and connection requests will remain unchanged.

Some key combinations are allowed in order to select several links easily. Sele
a line and maintain the SHIFT key will, on the next left mouse button click selec
the links between the link selected and the one currently under the mouse po
Using the CTRL key selects non-consecutive links in the list.

Deleting Connection Requests

Deleting a connection request is similar to a link deletion. Display the thumb
panel associated with the connection in one of the information panel, and sele
or several connection to be removed (see the Deleting Links paragraph for selection
tips). Then click on the “Delete Connection(s)” button that will remove the internal
structures of the selected connections and the associated routes.

An efficient way to get familiar with the GUI is to start from an already crea
topology. Some example files are provided with the MERLiN archive, and it is
ommended for beginners to modify an existing configuration (See the Opening an
existing configuration of this Chapter). Try to add more nodes or delete some
order to see the actions associated with the menus and icons.

Simulate the configuration in MERLiN

When the topology, connection requests, and algorithm selection are ready, c
the Control>Start option in the menu bar in order to send the request to the M
National Institute of Standards and Technology

Opening an existing configuration

er to

y the
 the
n the

figu-
rtcut
ears

. It is
ating
y the
nd
ill
ive
s are
LiN server. Once the results are ready, check the thumbnail panels in ord
observe the results in the algorithms performance panel and route panel.

Opening an existing configuration

Opening a configuration file can be done using the shortcut tool bar icon or b
menu File>Open. Each time a new configuration is loaded, the interface erases
current configuration from the screen and its associated data structures, the
topology is automatically replaced by the new one. Before loading a new con
ration, please make sure that your work is saved first. When clicking on the sho
icon or selecting the option Open in the File menu, a file selection window app
on the screen as presented in Figure 15.

The organization of this dialog box depends on the system you are running
recommended to refer to the specific documentation provided with your oper
system in order to use the selection box. Browse your hard drive or eventuall
network in order to find the MERLiN configuration file you want to load, a
select it. When opening a file, the interface will check if it is a valid file then it w
display the new topology and its information on the screen. The MERLiN arch
provides some example of files that can be loaded in the interface. These file

FIGURE 15. Open File Dialog Box
National Institute of Standards and Technology 61

Graphical User Interface

62

d

 for
 Each
s sec-

ith no
ts as
ion of
po-

fer to
g

located in the “Examples” directory of the GUI source archive. Feel free to loa
them and modify them in order to familiarize yourself with the interface.

Topology information panel

The topology information panel has been divided in two similar parts in order
the user to compare different aspects of the configuration at the same time.
part is divided in several thumbnail panels as seen in Figure 8 on page 55. Thi
tion details the different panels and the meaning of the parameter found in it.

Non Convert Node Thumbnail Panel

The non convert node thumbnail panel corresponds to the cross connect w
convertion present and selected in the topology. it is composed of two par
described in the Figure 16. The top part is to manage the table and the delet
nodes inside it. The bottom part is the list containing the information of the com
nents. Use the scroll bars to retrieve extra information and browse the list.

The different fields composing the list of cross connect are editable. Please re
the Getting/Setting information section in order to edit the information concernin
the nodes inside the thumbnail panels.

FIGURE 16. Cross-Connect Non Convert Thumbnail Panel
National Institute of Standards and Technology

Topology information panel

el. It
fer to
-
 yet.

-

Each cross-connect has the same set of parameters that is described here:

Convert Node Thumbnail Panel

The Convert thumbnail panel is similar to the non convert node thumbnail pan
contains information on the selected cross-connect convert nodes. Please re
the Non Convert Node Thumbnail Panel section above to retrieve the fields. Con
vert nodes need to have a matrix of convertion that has not been implemented

The name of the node. Please note that this name is linked to
the link and connection requests name. Once set when creat
ing a new node, this name can not be changed without delet-
ing the node and create a new one.

Bit Error Rate of the node.

Delay added by the node.

Jitter introduced by the node.

Bandwidth of the node.

The type of operation of the node. Normal is for a common
utilization. Protection mean that the component is used for
protection only. This is mostly used in restoration algo-
rithms when a fault has occurred in the network.

The mode indicates if the node is in use or not. Usually this
parameter is automatically set by MERLiN when a route is
using the node and some optical switching is required.

The status of the node is mostly used to study reconfigura-
tion algorithms. Working is the normal state, if the node is
set to failed, all the lambdas inside are also failed, meaning
no assignment of wavelength can be done, and restoration
algorithm need to use the protection components.
National Institute of Standards and Technology 63

Graphical User Interface

64

. The
is the
tion
Link Thumbnail Panel

The link thumbnail panel is composed of two parts as described in Figure 17
top part is to manage the table and the deletion of links and the bottom part
list containing the link information. Use the scroll bars to retrieve extra informa
on the components and browse the list.

Here is a full description of each field present in the panel:

FIGURE 17. Link Thumbnail Panel

The name of a link is automatically determined by the
source and destination node names. When a link is created
between two nodes, it is impossible to change the source
and/or the destination nodes. In order to change the nodes
attached to a link, it is required to delete the link and recre-
ate a new one.

The source node for the link (where the link starts).

The destination node for the link (where the link ends).
National Institute of Standards and Technology

Topology information panel

s

-

The fiber length.

Number of amplifiers used along the link.

Number of regenerators along the link.

Number of fibers inside the link.

Number of wavelength per fiber.

Bit Error Rate of the fiber used in the link. It is assumed that
all fibers in the link have the same properties.

Delay added by the link.

Jitter introduced by the link.

Bandwidth of the link.

The Operation Type of this link The link is usually used in
normal operation mode unless its operation mode is set to
protection. This is used in restoration algorithms to recover
from a network failure.

The mode indicates if the link is in use or not. Usually this
parameter is automatically set by MERLiN. A link mode
used means that all the lambdas of the link are used and thu
are not available for wavelength allocation.

The status of the link is mostly used to study the restoration.
Working is the normal state of a link. If the link is set to
failed, all the lambdas inside are also failed, meaning that in
some algorithms, no assignment can be done, and the algo
rithm needs to use protection components.
National Institute of Standards and Technology 65

Graphical User Interface

66

topol-
table
 the
croll

ame,
ther
 con-
Connection Thumbnail Panel

The connection thumbnail contains all the connections requests made on the
ogy. Similar to the Nodes and Link Thumbnails, the top part is to manage the
and the deletion of connections inside it. The bottom part is the list containing
information on the connections as it is described in the Figure 18. Use the s
bars to retrieve extra information on the components and browse the list.

Here is a full description for each fields present in the thumbnail panel. The N
Source and Destination are information in order to build the connection. The o
parameters are used by the quality of service algorithms in order to apply some
straints in construction of the connection.

FIGURE 18. Connection Thumbnail Panel

The name of a connection is automatically determined by
the source and destination node names plus a unique id.

The source node for the connection request (where the con-
nection starts).

The destination node for the connection (where the connec-
tion ends).

The desired distance for this connection (A constraint used
by QoS algorithms only).
National Institute of Standards and Technology

Topology information panel

 after
Routes Thumbnail Panel

The route thumbnail panel is used to display the results of a routing algorithm
a simulation is completed.

The desired Bit Error Rate along the connection (A con-
straint used by QoS algorithms only).

The desired Delay for the connection (A constraint used by
QoS algorithms only).

The desired Jitter over the connection (A constraint used by
QoS algorithms only).

The desired bandwidth for the connection (A constraint
used by QoS algorithms only).

This flag is set to false if a route and wavelength were
assigned for the connection request. The same route and
wavelength assignment are used in the case of a reconfigu-
ration algorithm. In case this flag is set to true, a route and
wavelength assignment need to be recomputed.

FIGURE 19. Routes Thumbnail Panel
National Institute of Standards and Technology 67

Graphical User Interface

68

o list
se to
which
d all

infor-
x is
list of

-

ist.
 the
Figure 19 on page 67 illustrates the panel and its different parts. There are tw
buttons in the top portion of the panel. The connection button is used to choo
display the connections in panel and the wavelengths button is used to select
wavelength to display in the graphical panel. By default, all connections an
wavelengths are displayed.

Each time the user selects a connection in the list located in the left panel, the
mation specific to the connection is displayed in the right panel. A text bo
present in used to retrieve the information on the connection request, and a
the result parameters is also present. The fields are as follows.

When the check box “Display this route?” is checked, the current route is dis
played in the graphical panel over the topology, while checking the “Display all
Routes in List?” check box will display all the routes present in the connection l
Clicking once again on one of the check boxes will remove the drawing of
route(s) from the graphical display.

The name of the connection request.

The source node for the connection request.

The destination node for the connection.

The wavelength assigned along the route.

By using the button located at the top left corner of the
thumbnail panel, it is possible to select one or several con-
nection to study. This option will affect the list of connec-
tion displayed in the left part of the thumbnail.

Select a specific lambda or display all of them by clicking
on the button located on the top right corner of the thumb-
nail panel. This option will also affect the graphical display
panel for the routes displayed on the screen.
National Institute of Standards and Technology

Topology information panel

n in

ox is
hed.
f the

eral
hen

ne by
hed

gu-
 after
ave
algo-
le in
lation
e the
Algorithms Thumbnail Panel

The algorithm panel is divided in several categories of algorithms, as show
Figure 20.

The category’s title is written in blue at the top of each panel and a check b
used in order to enable running the algorithm when the simulation is launc
When the box is checked, the algorithm selected in the list at the bottom part o
algorithm panel will be applied to the topology. It is possible to combine sev
algorithms for example a Routing and a Wavelength assignment algorithm. W
sending a simulation request to the server, the algorithms will be launched o
one in the order of the categories. That is the Routing algorithm will be launc
first followed by the Wavelength Assignment algorithm followed by the reconfi
ration category. A text box displays the performance results of each algorithm
simulation is complete. If this text information box is empty, the performances h
not been calculated yet or the algorithm has not been selected. The list of
rithms at the bottom of the algorithm panel includes all the algorithms availab
the category. Choose the one you want to apply before sending the simu
request to MERLiN. In order to save the algorithms performance results, us
Export option (See Export Performance of the Saving A Configuration File section
of this chapter).

FIGURE 20. Algorithm Thumbnail Panel
National Institute of Standards and Technology 69

Graphical User Interface

70

om-
djust

l

Customizing The Document Display

Customizing the display can be an efficient way to study part of a topology, c
pare the results obtained from simulation, use the different components and a
the size of the different panels in order to have a clear view of the parameters.

Scroll Bars

Zoom

Split Panels

List Management

Scroll bars in information panels allow the user to browse
the different lists of parameters in the thumbnail panels. In
the graphical panel, scroll bars adjust the current display of
the topology. This is useful when focusing on a smaller por-
tion of a big topology.

Use the zoom icons in order to study a specific part of a
topology, and add details to the current display. The wave-
length assignment can only be viewed in some zoom level.
When the zoom level is at its minimum, only the routing can
be seen at the lowest zoom level.

The split panels allow the user to resize the different parts
displayed on the screen. Use it to resize the graphical pane
in order to minimize it or maximize it when studying some
parameters or drawing a topology. In the information panel
it is also possible to remove one of the two thumbnail panels
by clicking on the arrows of the split bar.

Drag and drop the different columns of the lists to place
nearby two parameters that you want to study more thor-
oughly.
National Institute of Standards and Technology

Saving A Configuration File

enu
 the
re 21.

 run-
your
even-
our
ting
on-
ura-

 and
ests,
file is
nce
Saving A Configuration File

Saving a topology

Saving a configuration file can be done using the shortcut tool bar icon or the m
File>Save. When clicking on the shortcut icon or selecting the option Save in
File menu, a file selection window appears on the screen as presented in Figu

The organization of this dialog box can differ depending on the system you are
ning. It is recommended to refer to the specific documentation provided with
operating system in order to use the selection box. Browse your hard drive or
tually the network in order to locate the directory in which you want to save y
configuration file, and pick one file (or give a new name to the file). When selec
an existing file inside a directory, the system will prompt you for an overwrite c
firmation. Acknowledge the message if you want to replace an existing config
tion or Cancel it if you want to choose another name for your MERLiN file.

Saving a configuration file will save the entire topology description with names
node characteristics, links, some GUI extra information, the connection requ
the algorithms in use, and the routes already computed. However since this
destined to be the input file for a simulation, it will not include the performa

FIGURE 21. Save File Dialog Box
National Institute of Standards and Technology 71

Graphical User Interface

72

nce

ts and
hen

the
d the
log

mes
ests,
file is
ults

 most

 box
) the
 the
ents in
 your
results of the algorithms. In order to retrieve the information on the performa
results, it is necessary to export them (see Export performances).

Export Performances

The export performances feature provides a way to save the simulation resul
use them in external applications like other simulators or analyzing scripts. W
exporting algorithm performances, you will be prompt with a window similar to
one for saving a configuration file. Please refer to Figure 21 on page 71 an
Saving A Configuration File section of this chapter in order to use the saving dia
box.

Exporting the performances will save the entire topology description with na
node characteristics, links, some GUI extra information, the connection requ
the algorithms in use, and the routes already computed. In addition, since this
destined to be the output file of a simulation, it will include the performance res
of the algorithms.

Troubleshooting

This section is destined to give the user some tips in order to solve some of the
common problems that can come up while using the GUI.

The interface hang when loading a configuration

When trying to load a topology containing too much elements in the combo
(lists of the thumbnail panels), typically a huge number of connections (>300
graphical interface will hang for a lack of memory. This is due to a problem in
Java Swing Package that can not manage more than a certain amount of elem
the lists. To solve the problem, try to reduce the number of connections or split
network in several part to reduce the number of information to manage.

No algorithms are displayed or can be selected

This may be due to various problems.
National Institute of Standards and Technology

Troubleshooting

 run-
nder
 pos-
er can
r MS-
thms

erver.
hind
ot be

 not
e and
to
MERLiN Server is not running

If the MERLiN server can not be reached for any reason (i.e.: the server is not
ning, or the network is down), it is possible to launch the interface and work u
it in order to create a topology and connection requests. However it will not be
sible to simulate any algorithms and performance parameters. When the serv
not be reached, a warning message is displayed in the current Unix Shell o
DOS prompt, and no algorithm is displayed (or can be chosen) in the algori
menu or panel.

The interface displays a warning concerning the sockets

You must be on the same local network in order for the interface to reach the s
The interface is not built to support Firewall connections, and if you are be
such a gateway and try to access a distant MERLiN server, the interface will n
able to reach it.

The interface does not display the results

After launching a simulation and waiting for some time, if the interface does
display any results. this may means that the connection between the interfac
MERLiN is broken. Check with your MERLiN server administrator in order
launch the daemon again or check the network connection.
National Institute of Standards and Technology 73

Graphical User Interface

74
 National Institute of Standards and Technology

Part 2: Programmer’s Guide

CHAPTER 5 Architecture Overview
mer

ing
arts of

asy

ries
QoS

ged
This Chapter is dedicated to the internal architecture of MERLiN. The program
will find here a detailed description of the simulator and how it works.

The Core represents the heart of MERLiN. It is an independant program runn
on a distant (or local) computer, that dispatches the requests to the different p
the simulator.

The Plug-in represents an interface module to MERLiN and allows for e
access and extension.

The Algorithm is an essential part in the simulation tool.There are four catego
of algorithms to perform routing, wavelength assignment, reconfiguration and
support.

The Communication API describes the format of the messages exchan
between the various components during a simulation.
National Institute of Standards and Technology 77

Architecture Overview

78

er’s
s, the
repre-
ested
s its
to the

and-
re in

er
t the
trictly
Core

The core of MERLiN is a daemon running in the background and waiting for us
requests. Given an input as a script file that describes the topology, the route
Qos parameters and the algorithms to be used, the core builds its own data
sentation of the network. Then, the core dispatches the topology to the requ
algorithms. After the algorithm complets its computation, the core translate
internal structure to a user friendly representation and send the results back
user.

Plug-in

A plug-in is an interface module that allows easy access to MERLiN. It is a st
alone application and can be almost anything that communicates with the co
MERLiN’s language format. A plug-in acts like a client in MERLiN’s client/serv
architecture. Its functionnality is to send a request to the simulator and collec
result for the user. The interface between the plug-in and the core has been s

 Input parameters
 [TOPOLOGY]
 Nodes
 Links
 [ROUTE]
 Source
 Destination
 [QOS]
 Predefined
 parameters
 [ACTION]
 Algorithms used

Component 1

Parameter 1 Parameter 3Parameter 2

DestinationSource

Routing
algorithm class

Reconfiguration
algorithm class

Wavelength
assignment

algorithm class

Output
parameters
[TOPOLOGY]
Wavelengths
assigned
[ROUTE]
Complete route
[QOS]
Measured
parameters

[PERFORMANC
E]

ParametersParameters Parameters

Component 2 Component 3

MERLiN Core

Core of the Simulator
National Institute of Standards and Technology

Algorithm

re.
sage

uses
rally

e core
 trans-
erent
defined and a full description of the language format is given in the Chapter 3:
MERLiN’s grammar.

Algorithm

An algorithm is a special kind of plug-in that communicates with MERLiN’s co
The main differences between an algorithm and a plug-in lies in the mes
exchange : the algorithm uses MERLiN’s internal structures while a plug-in
the script file representation. Another difference is that an algorithm is gene
called by the core and not directly by the user.

Communication API

Whenever a communication is needed between a plug-in and the core, or th
and an algorithm, a communication pipe is opened. Then the messages are
fered both ways througth a local or remote port depending on where the diff
applications are running.

Messages scheduler

Communication port

Plug-In

MERLiN Messages scheduler

Communication port

Local or remote access
Messages

MERLiN
National Institute of Standards and Technology 79

Architecture Overview

80

via a
ve a
 this
e to

thms
muni-

 his/
e/she
The communication between all the entities composing MERLiN is conducted
network interface using UNIX sockets. The packets generated by MERLiN ha
specific format that is described here. It is not really important to understand
simple format since a template communication API is included in the packag
help in building new plug-ins or algorithms.

The real advantage of a such interface is to make MERLiN plug-ins and algori
language independent. As long as the language used supports the sockets com
cation techniques, and if the MERLiN API is used, the user is free to develop
her own internal structures and functions, and combine them in any way h
choose.

Size of the
packet

MERLiN
command Data

FIGURE 22.
National Institute of Standards and Technology

CHAPTER 6 Component Hierarchy
d to
tion
can

s-

und

ly

 dif-

TML
Introduction

MERLiN is written in C/C++, using a framework of classes especially designe
simulate WDM networks. The document of reference is the HTML documenta
provided with the MERLiN archive. When uncompressing the archive, one
find the source files stored in the src directory. The src directory contains the fol-
lowing directories :

• component contains the classes representing WDM components : links cros
connect, wavelength,etc..

• math contains the basic type of data used in MERLiN.

• merlin contains the code source of the MERLiN server and some tightly bo
to the MERLiN internals.

• parser contains the code for the MERLiN file parser and some classes tight
bound to the parser.

• tool contains some useful classes like list, array, matrix, vector.

• network contains classes used to manage the communication between the
ferent entitties of MERLiN (server, plug-in, algorithms).

The best way to have an overview of the classes available is to look at the H
documentation.
National Institute of Standards and Technology 81

Component Hierarchy

82

 the
Hierarchy

Here is a description of hte classe of each category.

Component

The inheritance mechanism has been used only for the design of the component
classes. The framework provide many level of inheritance in order to ease
development of futur components.

• Component
this is an abstract class from that every other component is derived.
Int cid: the id of this component.
Byte state_mask: status,mode and operation type mask.
char* cname: name of the component.

• Connection
this class represents a source-destination pair between two nodes.
Node* src: source node.
Node* dest: destination node.
Int cid: connection id.
char* cname: connection name.
Float distance: length of the connection.
Float ber: bit error rate.
Float delay: delay for this connection.
Float jitter: jitter requested by this connection.
Float bw: bandwidth requested for this connection.
Int src_id: id of the source node.
Int dest_id: id of the destination node.

• Lambda
this class represents a wavelength on a given link.
Int lid: id of this Lambda.
Byte state_mask: state mask of this Lambda.

• Link
this class represents a link between two nodes.
 Float distance: physical distance of this link.
Int nb_amplifier: number of amplifiers contained along the link.
National Institute of Standards and Technology

Hierarchy
Int nb_regenerator: number of regenerators contained along the link.
Int fiber_ratio: number of fibers in this link.
Int lambda_ratio: number of wavelengths per fiber.
Float ber: bit error rate.
Float delay: delay introduced by this link.
Float jitter: jitter introduced by this link.
Float bw: bit rate available on this link.
Node* node_in: destination node of the link.
Node* node_out: source node of the link.
lambda_list: list of the wavelengths used in this link.
Int node_in_id: id of the destination node.
Int node_out_id: id of the source node.

• Node
this is an abstract class that every cross connect is derived from.
Float m_ber: bit error rate.
Float m_delay: delay introduced by this node.
Float m_jitter: jitter introduced by this node.
Float m_bw: bandwidth of this node.
List<Link> m_list_link_in: list of the links coming in the node.
List<Link> m_list_link_out: list of the links coming out the node.

• Oxc
this is an abstract class that is a generic representation for a cross connect.

• OxcConvert
this class represents a cross-connect that can do wavelength conversion.

• OxcNonConvert
this class represents a cross-connect that can not do wavelength conversion.

• Route
this class represents the ligthpath established for a given connection request.
Int rid: the route id.
char* rname: name of the lightpath.
Float distance: length of the lightpath.
Float ber: bit error rate of the lightpath.
Float delay: delay of this ligthpath.
Float jitter: jitter of this ligthpath.
Float bw: bit rate of this lightpath.
Int nb_amplifier: number of amplifiers on this lightpath.
National Institute of Standards and Technology 83

Component Hierarchy

84

Int nb_regenerator: number of regenerators on this lightpath.
Connection* connection: the connection attached to this lightpath.
List<Node>* m_node_list: list of the nodes along the lightpath.
Int connection_id: id of the connection attached to this lightpath.
List<Int>* node_id_list: list of the id of the nodes along the ligthpath.

• Wave
this class represents the wavelengths used for a given route.
Route*route: the route attached to this wave.
List<WlAssigned>* wavelength_list: list of the wavelength used along this
ligthpath.
Int route_id: id of the route attached to this group of wavelengths.

• WlAssigned
this class represents a set of wavelengths used for one route only.
Link* link: the link where the wavelengths are assigned.
List<Lambda>* lambda_assigned_list: the list of the wavelengths assigned on
this link.
Int link_id: the id of the link attached to this set of wavelengths.

The Figure 23 on page 85 show the hierarchy of the Component class.
National Institute of Standards and Technology

Hierarchy

FIGURE 23. h

Link

distance
nb_amplif ier
nb_regenerato
fiber_ratio
lambda_rat io
ber
delay
jitter
node_in_id
node_out_id
lambda_list
ierarchy

Node

node_in

node_out

in_link_list

out_link_list

Oxc

OxcConvert OxcNonConvert

Com p onent

cid
state_mask
cname

r

m_ber
m_delay
m_jitter
m_bw
m_list_link_in
m_list_l ink_out
National Institute of Standards and Technology 85

Component Hierarchy

86

ta-
mall

n

 dae-

.

 the
Math

Each class of the math category is able to transform itself in a common represen
tion in order to avoid architecture-dependent conflict between big-indian and s
indian representation systems.

• Boolean
a class that represents a boolean.

• Byte
a class that represents a byte. Bytes are heavily used in the communicatio
between the server and the algorithm.

• Double
a class that represents a double.

• Float
a class that represents a float.

• Int
a class that represents an integer.

Merlin

• Parameter
this class represents a parameter used in the communication between the
mon, the plug-ins and the algorithms.
Parameter_t type: the type of the data attribute of this parameter.
Int pid: the id of this parameter.
void* data: the Parameter's data.

• ParameterList
this class represents a list of instances of Parameter.

Network

• Server
this class is used in the daemon. There is only one instance of this class.
Socket* server: the server’s socket.
Socket* client: the list of Clients connected. Only ONE is connected in this
implementation.
Socket* algorithm: the algorithm currently running.
boolean is_running: boolean flag that indicates if the server is running or not

• Client
this class is used in every client (plug-in or algorithm) that has to connect to
National Institute of Standards and Technology

Hierarchy

 the

g

illed

inks,
.
put

server.
Socket* client: the socket connected to the server.

• Socket
this class embedded a subset of the socket API.
int sid: the system id of this Socket.

Parser

• Algorithm
this class represents an algorithm. It is used in every algorithm launched by
MERLiN daemon.
char* m_machine: the name of the algorithm's machine.
char* m_path: the full path to reach the algorithm.
Parameter* m_parameter: the input parameter (only available after the parsin
of the input file).
The following attributes are the parameters of the algorithm. They are deta
in “Analyzing The Results” on page 27:
Float m_average_hops
Float m_used_wavelengths
Float m_throughput
Float m_utilization
Float m_blocking_probability
Float m_wavelength_reusability
Float m_computation_complexity
Float m_cost
Float m_wavelength_availability
Int m_type: the type of the algorithm.
List<Connection>* ml_connection: list of the connection requests.

• Topology
this class represents a topology. It contains a list of the nodes, a list of the l
a list of the connections requests and on the ligthpath currently established
Most of the attributes of a Topology object are set after the parsing of the in
file or created while calling the copy constructor.
List<OxcConvert>* m_oxc_convert_list: list of the cross-connect that can do
wavelength conversion.
List<OxcNonConvert>* m_oxc_non_convert_list: list of the cross-connect that
can not do wavelength conversion.
List<Link>* m_link_list: list of the links of the topology.
List<Connection>* m_connection_list: list of the connection requests.
National Institute of Standards and Technology 87

Component Hierarchy

88

tion of

List<Route>* m_route_list: list of the established lightpaths.
List<Wave>* m_wave_list: list of the wavelengths used by the lightpaths.
List<Algorithm>* m_algo_list: list of the algorithms to start.

Tool

• Array
this class represents an array. It is mainly used to send the byte representa
the objects through the socket interface.
Int m_size: size of the array.
classT* m_items: pointer on the first element of the array.
Int m_current: index of the current element of the array.

• List
this class represents a list of pointers on objects.
Element<classT>* head: pointer on the head of the list.
Element<classT>* current: pointer on the current element of the list.
Int elements: number of elements in the list

• Matrix
this class represents a matrix. It inherits from the Vector class.

• Tool
this class contains useful functions to be used in the algorithms.

• TopologyMatrix.
this class is another representation of the topology. It can be more useful in
some algorithm.

• Vector
this class represents a vector. It is the parent class of the class Matrix.
National Institute of Standards and Technology

CHAPTER 7 The MERLiN Grammar
nd
tion
and

am-

e

the
d in
The simplest way to communicate with the core of MERLiN is to build a file a
send it to MERLiN. However, this file has to obey a specific syntax. This sec
intends to provide a description of the syntax used to write valid MERLiN files
is broken into two sections:

What Is A Grammar? . This section gives on the use and the meaning of a gr
mar.

Description of the MERLiN Grammar provides a complete description of th
grammar used.

If you feel comfortable with grammar specifications, you can go directly to
section that describes MERLiN’s grammar including the list of tokens use
MERLiN and the grammar rules.
National Institute of Standards and Technology 89

The MERLiN Grammar

90

na-
rison
 the
pects
valid

E:

for a
ould
e a
, the
What Is A Grammar?

A grammar is a set of rules that a file syntax must obey. These rules are a combi
tion of tokens that are compared to tags present in the input file. The compa
(also called parsing) determines whether or not the input file respect entirely
correct syntax. This operation is performed because the application usually ex
a certain set of parameters placed in order to build its internal structure with
values. An example for a rule declaration is as follows:

RULE
 TOKEN1
 | TOKEN2

This rule is applied in the definition of a component’s parameter, MODE_VALU

MODE_VALUE
 USED
 | NOT_USED

This rule means that the mode of a component can be either USED or NOT_USED
(The symbol "|'' is a logical symbol used to define different possible values
rule). Both USED and NOT_USED are tokens, meaning that in the file, we sh
find the word "USED" or "NOT_USED" at the correct place. A token can also b
rule. Thus rules include a combination of tokens and other rules. For example
following rule specifies how to declare a link:

LINK_DECLARATION_EXPLICIT
 LINK ID ID ID LINK_DEF
LINK_DEF
 OPEN
 DISTANCE ID END
 NB_AMPLIFIER ID END
 NB_REGENERATOR ID END
 FIBER_RATIO ID END
 LAMBDA_RATIO ID END
 BER ID END
 DELAY ID END
 JITTER ID END
 BW ID END
 OP_TYPE OP_TYPE_VALUE END
 MODE MODE_VALUE END
 STATUS STATUS_VALUE END
National Institute of Standards and Technology

What Is A Grammar?

d
nd

to it.
 alias

d in

the
D is

. The
o the

ailed
ttp://
 CLOSE

LINK and ID are tokens but LINK_DEF is a rule. The rule LINK_DEF is define
with tokens and three rules, which are OP_TYPE_VALUE, MODE_VALUE, a
STATUS_VALUE.

Each final token can be represented in the file by the word itself or an alias
Thus, each token of the grammar can have a substitute that is defined in an
table. For example, the previous DEFAULT_LINK_DEF rule can be describe
the input file as follows:

{
 DISTANCE 10 ;

NB_AMPLIFIER 10 ;
NB_REGENERATOR 20 ;
FIBER_RATIO 3 ;
LAMBDA_RATIO 5 ;
BER 0.01 ;
DELAY 0.03 ;
JITTER 0.02 ;
BW 155 ;
OP_TYPE NORMAL ;
MODE NOT_USED ;
STATUS WORKING ;

}

Figure 8: Example of the Link's file representation in MERLiN

Here for simplicity, the symbol used to represent the token DISTANCE in
grammar is the word "DISTANCE", but the one used to represent the token EN
";". The tokens must be separated either by a space or by an end of line
description of the grammar should then contain the list of all the substitutes t
tokens and the list of all the rules.

For more information concerning the construction of grammars and more det
examples, please refer to the GNU web site of Bison (the GNU parser) at h
www.gnu.org/manual/bison/index.html.
National Institute of Standards and Technology 91

http://www.gnu.org/manual/bison/index.html

The MERLiN Grammar

92

 of
script
Description of the MERLiN Grammar

This section presents the full description of the MERLiN grammar. The list
tokens is useful in order to know the substitutes that must be present in the
file.

Token list

FIGURE 24. Tokens’ substitutes

Token Substitute

ACTION ACTION

ADD_CONNECTION ADD_CONNECTION

ALGO_LOCATION ALGO_LOCATION

ASSIGN_WL ASSIGN_WL

CLOSE }

CONNECTION CONNECTION

CONNECTION_BLOC_T
AG [CONNECTION_BLOC]

CONNECTION_MAX CONNECTION_MAX

CREATE_ROUTE CREATE_ROUTE

BER BER

BW BW

DEFAULT DEFAULT

DELAY DELAY

DEST DEST

DISTANCE DISTANCE

END ;

FAILED FAILED

FIBER_RATIO FIBER_RATIO

GUI GUI

ID
["|"":""\\"A-Za-z0-9_/\.-
<>]+
National Institute of Standards and Technology

http://www.gnu.org/manual/bison/index.html

Description of the MERLiN Grammar
JITTER JITTER

LAMBDA_LIST LAMBDA_LIST

LAMBDA_RATIO LAMBDA_RATIO

LAMBDAS LAMBDAS

LINK LINK

LINK_BLOC_TAG [LINK_BLOC]

LINK_FAILURE LINK_FAILURE

MEAN_CONNECTION_S
ET

MEAN_CONNECTION_S
ET

MODE MODE

NB_AMPLIFIER NB_AMPLIFIER

NB_REGENERATOR NB_REGENERATOR

NODE_BLOC_TAG [NODE_BLOC]

NODE_FAILURE NODE_FAILURE

NODE_NAME_LIST NODE_NAME_LIST

NORMAL NORMAL

NOT_USED NOT_USED

OPEN {

OP_TYPE OP_TYPE

OXC_CONVERT OXC_CONVERT

OXC_NON_CONVERT OXC_NON_CONVERT

PROTECTION PROTECTION

RECONFIGURATION RECONFIGURATION

REM_CONNECTION REM_CONNECTION

ROUTE ROUTE

ROUTE_BLOC_TAG [ROUTE_BLOC]

ROUTE_ID ROUTE_ID

START START

STATE STATE

FIGURE 24. Tokens’ substitutes

Token Substitute
National Institute of Standards and Technology 93

The MERLiN Grammar

94
Please note that the substitute for the ID token is a regular expression.

Rules list

S:
 TOPOLOGY_BLOC ACTION_BLOC GUI_BLOC

TOPOLOGY_BLOC:
 TOPOLOGY OPEN
 NODE_BLOC_TAG OPEN NODE_BLOC_LIST CLOSE
 LINK_BLOC_TAG OPEN LINK_BLOC_LIST CLOSE
 CONNECTION_BLOC_TAG OPEN CONNECTION_BLOC_LIST CLOSE
 ROUTE_BLOC_TAG OPEN ROUTE_BLOC_LIST CLOSE
 WAVE_BLOC_TAG OPEN WAVE_BLOC_LIST CLOSE
 CLOSE

ALGO_LOCATION_DEF:
 ALGO_LOCATION
 ID
 ID
 END

NODE_BLOC_LIST:
 END
 | NODE_BLOC NODE_BLOC_LIST
 | NODE_BLOC

STATUS STATUS

SWITCH_TABLE SWITCH_TABLE

TOPOLOGY TOPOLOGY

USED USED

WAVE WAVE

WAVE_BLOC_TAG [WAVE_BLOC]

WL_ASSIGNED_LIST WL_ASSIGNED_LIST

WORKING WORKING

FIGURE 24. Tokens’ substitutes

Token Substitute
National Institute of Standards and Technology

Description of the MERLiN Grammar
LINK_BLOC_LIST:
 END
 | LINK_BLOC LINK_BLOC_LIST
 | LINK_BLOC

CONNECTION_BLOC_LIST:
 END
 | CONNECTION_BLOC CONNECTION_BLOC_LIST
 | CONNECTION_BLOC

CONNECTION_SHORT_BLOC_LIST:
 END
 | CONNECTION_SHORT_BLOC CONNECTION_SHORT_BLOC_LIST
 | CONNECTION_SHORT_BLOC

ROUTE_BLOC_LIST:
 END
 | ROUTE_BLOC ROUTE_BLOC_LIST
 | ROUTE_BLOC

WAVE_BLOC_LIST:
 END
 | WAVE_BLOC WAVE_BLOC_LIST
 | WAVE_BLOC

NODE_BLOC:
 DEFAULT_OXC_CONVERT_DECLARATION
 | DEFAULT_OXC_NON_CONVERT_DECLARATION
 | OXC_CONVERT_DECLARATION
 | OXC_NON_CONVERT_DECLARATION

LINK_BLOC:
 DEFAULT_LINK_DECLARATION
 | LINK_DECLARATION

DEFAULT_LINK_DECLARATION:
 DEFAULT LINK LINK_DEF

DEFAULT_OXC_CONVERT_DECLARATION:
 DEFAULT OXC_CONVERT OXC_CONVERT_BLOC
National Institute of Standards and Technology 95

The MERLiN Grammar

96
DEFAULT_OXC_NON_CONVERT_DECLARATION:
 DEFAULT OXC_NON_CONVERT OXC_NON_CONVERT_BLOC

LINK_DECLARATION:
 LINK_DECLARATION_EXPLICIT
 | LINK_DECLARATION_IMPLICIT

LINK_DECLARATION_EXPLICIT:
 LINK ID ID ID LINK_DEF

LINK_DECLARATION_IMPLICIT:
 LINK ID ID ID END

OXC_CONVERT_DECLARATION:
 OXC_CONVERT_DECLARATION_EXPLICIT
 | OXC_CONVERT_DECLARATION_IMPLICIT

OXC_CONVERT_DECLARATION_IMPLICIT:
 OXC_CONVERT ID END

OXC_CONVERT_DECLARATION_EXPLICIT:
 OXC_CONVERT ID OXC_CONVERT_BLOC

OXC_NON_CONVERT_DECLARATION:
 OXC_NON_CONVERT_DECLARATION_EXPLICIT
 | OXC_NON_CONVERT_DECLARATION_IMPLICIT

OXC_NON_CONVERT_DECLARATION_EXPLICIT:
 OXC_NON_CONVERT ID OXC_NON_CONVERT_BLOC

OXC_NON_CONVERT_DECLARATION_IMPLICIT:
 OXC_NON_CONVERT ID END

LINK_DEF:
 OPEN
 DISTANCE ID END
 NB_AMPLIFIER ID END
 NB_REGENERATOR ID END
 FIBER_RATIO ID END
 LAMBDA_RATIO ID END
National Institute of Standards and Technology

Description of the MERLiN Grammar
 BER ID END
 DELAY ID END
 JITTER ID END
 BW ID END
 OP_TYPE OP_TYPE_VALUE END
 MODE MODE_VALUE END
 STATUS STATUS_VALUE END
 LAMBDA_LIST_BLOC
 CLOSE

LAMBDA_LIST_BLOC:
 LAMBDA_LIST OPEN LAMBDA_LIST_DEF CLOSE

LAMBDA_LIST_DEF:
 END
 | LAMBDA_LIST_ELEMENT LAMBDA_LIST_DEF
 | LAMBDA_LIST_ELEMENT

LAMBDA_LIST_ELEMENT:
 ID OP_TYPE_VALUE MODE_VALUE STATUS_VALUE END

OXC_CONVERT_BLOC:
 OPEN
 BER ID END
 DELAY ID END
 JITTER ID END
 BW ID END
 OP_TYPE OP_TYPE_VALUE END
 MODE MODE_VALUE END
 STATUS STATUS_VALUE END
 SWITCH_TABLE_DEF
 CLOSE

OXC_NON_CONVERT_BLOC:
 OPEN
 BER ID END
 DELAY ID END
 JITTER ID END
 BW ID END
 OP_TYPE OP_TYPE_VALUE END
 MODE MODE_VALUE END
National Institute of Standards and Technology 97

The MERLiN Grammar

98
 STATUS STATUS_VALUE END
 SWITCH_TABLE_DEF
 CLOSE

SWITCH_TABLE_DEF:
 SWITCH_TABLE OPEN SWITCH_ENTRY_LIST CLOSE

SWITCH_ENTRY_LIST:
 SWITCH_ENTRY SWITCH_ENTRY_LIST
 | SWITCH_ENTRY

SWITCH_ENTRY:
 ID ID ID ID END
 | END

CONNECTION_BLOC:
 CONNECTION ID OPEN
 START ID END
 DEST ID END
 DISTANCE ID END
 BER ID END
 DELAY ID END
 JITTER ID END
 BW ID END
 CLOSE

CONNECTION_SHORT_BLOC:
 CONNECTION ID END

OP_TYPE_VALUE:
 NORMAL
 | PROTECTION

MODE_VALUE:
 USED
 | NOT_USED

STATUS_VALUE:
 WORKING
 | FAILED
National Institute of Standards and Technology

Description of the MERLiN Grammar
ROUTE_BLOC:
 ROUTE ID OPEN
 CONNECTION ID END
 DISTANCE ID END
 BER ID END
 DELAY ID END
 JITTER ID END
 BW ID END
 NODE_NAME_LIST NODE_NAME_LIST_DEF
 CLOSE

NODE_NAME_LIST_DEF:
 ID NODE_NAME_LIST_DEF
 | END

WAVE_BLOC:
 WAVE OPEN WAVE_DEF CLOSE

WAVE_DEF:
 ROUTE ID END WL_ASSIGNED_LIST
 OPEN WL_ASSIGNED_LIST_DEF CLOSE

WL_ASSIGNED_LIST_DEF:
 WAVE_LAMBDA_LIST_BLOC WL_ASSIGNED_LIST_DEF
 | WAVE_LAMBDA_LIST_BLOC

WAVE_LAMBDA_LIST_BLOC:
 OPEN LINK ID END LAMBDA WAVE_LAMBDA_LIST CLOSE

WAVE_LAMBDA_LIST:
 ID WAVE_LAMBDA_LIST
 | END

ACTION_BLOC:
 ACTION OPEN ACTION_LIST CLOSE

 ACTION_LIST:
 ACTION_DEF ACTION_LIST
 | ACTION_DEF

ACTION_DEF:
National Institute of Standards and Technology 99

The MERLiN Grammar

100
 END
 | CREATE_ROUTE_ACTION
 | ASSIGN_WL_ACTION
 | RECONFIGURATION_ACTION
 | ADD_CONNECTION_ACTION
 | REM_CONNECTION_ACTION
 | LINK_FAILURE_ACTION
 | NODE_FAILURE_ACTION

CREATE_ROUTE_ACTION:
 CREATE_ROUTE OPEN ALGO_LOCATION_DEF
 CONNECTION_BLOC_LIST CLOSE

ASSIGN_WL_ACTION:
 ASSIGN_WL OPEN ALGO_LOCATION_DEF
 CONNECTION_SHORT_BLOC_LIST CLOSE

RECONFIGURATION_ACTION:
 RECONFIGURATION
 OPEN
 ALGO_LOCATION_DEF
 CONNECTION_BLOC
 CONNECTION_MAX ID END
 MEAN_CONNECTION_SET ID END
 CLOSE

ADD_CONNECTION_ACTION:
 ADD_CONNECTION ALGO_LOCATION_DEF OPEN CLOSE

REM_CONNECTION_ACTION:
 REM_CONNECTION ALGO_LOCATION_DEF OPEN CLOSE

LINK_FAILURE_ACTION:
 LINK_FAILURE ALGO_LOCATION_DEF OPEN CLOSE

NODE_FAILURE_ACTION:
 NODE_FAILURE ALGO_LOCATION_DEF OPEN CLOSE

GUI_BLOC:
 | GUI OPEN ID_LIST_DEF CLOSE
National Institute of Standards and Technology

Description of the MERLiN Grammar
ID_LIST_DEF:
 | END
 | ID ID ID END ID_LIST_DEF

National Institute of Standards and Technology 101

The MERLiN Grammar

102
 National Institute of Standards and Technology

CHAPTER 8 Extending MERLiN
 to
late
tors

NISI,
od-

ce to

te-

ra-

kes
plate
The communication system included in MERLiN allows the programmers
implement their own algorithms and plug-ins. By thus way, MERLiN can simu
a large variety of algorithms, and can be interfaced with other network simula
such as optical lower layer simulators or higher layer simulators such as NS,
ASM, etc...). The aim of this section is to explain the different structures and m
ules to use in order to add a new algorithm/plug-in to MERLiN.

The Plug-in section describes how to create a new plug-in such as an interfa
another simulator.

The Algorithm section explains how to implement your own algorithm and in
grate it to MERLiN database.

The Integration To MERLiN section presents the different steps in the integ
tion of a new module in the MERLiN archive.

The Plug-in

The MERLiN archive includes a simple communication mechanism which ta
care of the data exchange between the algorithm/plug-in and the core. A tem
National Institute of Standards and Technology 103

Extending MERLiN

104

. In
om-
f the

es.

 been
 from
a
l

econd
 more
ilable

 the
rip-
generic Makefile script is also provided in order to compile your application
order to implement your own module, you do not have to be familiar with the c
munication techniques, but it is recommended to have a basic knowledge o
C,C++ or Java languages programming techniques, and compilation techniqu

In order to speed up the development of a plug-in, a communication API has
developed in C++. The code of the API and a template Makefile can be copied
the src/template/plug-in directory of the archive. The communication API call
specific function named plugInMain that must be present in your module, and wil
be called with the following signature.

void plugInMain (int argc, char **argv);

The first argument is the number in arguments of the command line, and the s
argument represent the command line parameters used in the plug-in. For
details, please refer to the Client class description in the reference manual ava
online.

The communication API of a plug-in will only take care of opening and closing
communication port (italic letter in the following description). Here is the desc
tion in pseudo-code of what the text file plug-in is supposed to do.

• Connect to MERLiN communication port.

• Call the plugInMain function

• Read an input file.

• Send the file to MERLiN.

• Wait for the reply on the communication port.

• If the answer is an error, return the error to the user.

• Else the answer is an acknowledgement message, read the parameters
on the communication port.

• Write the Output file on the disk.

• return from the plugInMain function

• Close the communication port.
National Institute of Standards and Technology

The Algorithm

tion

ped

he
eeded.

r this
 for
ters
ance

d by
with
t be
tion.
 your

mpts
erent
rip-
The Algorithm

An algorithm receiving a list of parameters from MERLiN does some computa
before returning an output list of parameters to MERLiN.

Similar to the plug-ins, a communication API for the algorithm has been develo
in C++. The code of the API and a template Makefile can be copied from thesrc/
template/algorithm directory of the archive. The communication API starts t
communication between the algorithm and the core and get the parameters n
Then it calls a specific function named algoMain. This function MUST be present
in your module, and will be called with the following signature.

void algoMain (ParameterList & param_in_list,
 ParameterList & param_out_list);

The arguments are respectivly the list of parameters needed as an input fo
algorithm (filled by the communication API), and the output list of parameters
this algorithm (this must be filled by the algorithm). The output list of parame
contains the modified topology and associated components, and the perform
parameters of the algorithm. The modified list of parameters must be retrieve
the communication API in order to end properly the communication process
MERLiN. You are free to do anything necessary in your algorithm but you won’
able to communicate with the core until the algorithm completes its execu
Beside these constraints you are allowed to implement whatever you want in
algorithm.

We list here the pseudo-code of an algorithm used in MERLiN. The code atte
to give an idea of the mechanisms used for communicating between the diff
elements of the simulator. The communication API (italic in the following desc
tion) is a little bit more complex than for a Plug-In.

• Open a communication port.

• Register the algorithm to MERLiN.

• Wait for a command from MERLiN.

• Read the message from the communication port.

• If the command is invalid, return an error to MERLiN.

• If the command is valid, read the parameters on the communication port.

• Build the internal structures (topology, route, set algorithms parameters)
National Institute of Standards and Technology 105

Extending MERLiN

106

ide
,
ining

 the
oot
the
d be
he

cific
. See

you
n the
dify
om-

asily

mall
ill
on of
• Execute the algoMain function of the algorithm.

• Return the results to MERLiN.

• Close the communication port.

To identify and register your algorithm in MERLiN's core, you MUST also prov
in your module a reference to a special string that is the name of the executable file
result of the compilation process of your algorithm. Please declare at the beg
of your module the following variable:

char * algorithm_id = "[path/]name_of_the_algorithm";

This string MUST NOT contain any special characters that could interfere with
file system of your computer. It must contain either the full path from the r
directory to the binary file, or the relative path from the directory defined in
variable MERLINPATH. We recommend the second solution. The path shoul
set to algorithm/algorithm_class to match what has already be implemented in t
current version of the simulator.

Integration To MERLiN

We first recommend to place the source files of your new module in a spe
directory, and place it into the corresponding sub-directory of the source tree
the description of the sub-directories inside the src directory of the archive (Part1,
Chapter). Every time that you want to implement an algorithm or a plug-in,
should take a look at the template Makefile and modify the variables located i
part that is outside the WARNING statements. You will have eventually to mo
the Object compilation part (at the end of the template Makefile) in order to c
pile your own modules.

We recommend the use of the template makefile in order to integrate more e
your own modules to MERLiN. This file is named Makefile.in and is not (and
should not be) a valid makefile that can be used directly by anyone. After a s
modification in the configure script of the archive, the compilation process w
take care of the modifications inside the template. The first step in the integrati
your module to MERLiN is to make the modifications inside the Makefile.in file as
described in the following example (used for the shortest path algorithm).

EXE= shortest_path
National Institute of Standards and Technology

Integration To MERLiN

to
 The

tting
ach

ith
on-

 the

. If
rithm

ask to
INSTALL_EXE= algorithm/routing
OBJECTS=
…

Please provide a type for the INSTALL_EXE variable. This will allow MERLiN
install your executable code in the corresponding categories of algorithms.
type can be:

• routing(Routing Algorithms)

• wavelength(Wavelength Assignment Algorithms)

• reconfiguration(Reconfiguration Algorithms)

• qos(Quality Of Service Algorithms)

You can then add your own list of modules to the compilation process, by se
the OBJECTS variable. Then you will have to add the compilation lines for e
module in the Object Section of the template Makefile.

To generate the Makefile associated to the template you have to run the configure
script in order to fill in the directories and the compilation variables that match w
your architecture. Then you can go to MERLiN root directory and launch the c
figure script with the --file option on the file that you want to generate (here
Makefile):

Example:./configure --file=path_to_my_algorithm/Makefile

Then you can go back to your working directory and compile your algorithm
there are no errors you can follow the next step in order to integrate your algo
in MERLiN.

Here is a table representing the differents actions that one can perform and
MERLiN.

IN TOPOLOGY List <Component>

CREATE_ROUTE List <Connection>

OUT TOPOLOGY List <Component> (modified)

ROUTE_CREATED List <Route>

IN TOPOLOGY List <Component>

ASSIGN_WAVELENGTH List <Route>
National Institute of Standards and Technology 107

Extending MERLiN

108
OUT TOPOLOGY List <Component> (modified)

WAVELENGTH_ASSIGNED List <Wave>

IN TOPOLOGY List <Component>

ADD_CONNECTION List <Connection>

List <Route>

OUT TOPOLOGY List <Component> (modified)

CONNECTION_ADDED List <Route> (new)

List<Route> (modified)

IN TOPOLOGY List <Component>

REMOVE_CONNECTION List <Connection>

List <Route>

OUT TOPOLOGY List <Component> (modified)

CONNECTION_REMOVED List <Route> (removed)

List <Route> (modified)

IN TOPOLOGY List <Component>

FAIL_LINK List <Link>

List <Wave>

List <Routes>

OUT TOPOLOGY List <Component> (modified)

LINK_FAILED List <Wave>

List <Route>

List <Route> (modified)

IN TOPOLOGY List <Component>

FAIL_NODE List <Node>

List <Wave>

List <Route>

OUT TOPOLOGY List <Component>
National Institute of Standards and Technology

Integration To MERLiN
NODE_FAILED List <Wave>

List <Route>

List <Wave> (modified)

List <Route> (modified)

IN TOPOLOGY List <Component>

FAIL_LAMBDA List <Lambda>

List <Link>

List <Wave>

List <Route>

OUT TOPOLOGY List <Component>

LAMBDA_FAILED List <Link>

List <Wave>

List <Route>

List <Link> (modified)

List <Wave> (modified)

List <Route> (modified)

IN TOPOLOGY List<Component>

RECONFIGURATION List<Connection>

NbMaxConnection

MeanNbConnection

OUT TOPOLOGY List<Component> (modified)

RECONFIGURED List<Route>

List<Wave>
National Institute of Standards and Technology 109

Extending MERLiN

110
 National Institute of Standards and Technology

Appendices

CHAPTER 9 k shortest path
for a
 next

Abstract

The k_shortest_path is a routing algorithm that computes K shortest paths
connection request between a node pair. For now, K is fixed to 3, but in the
version of MERLiN the user will be able to set this number.

Input parameters

Input parameters are :

a description of the current topology that contains :

• a list of links,

• a list of nodes (cross connect),

• a list of existing routes, that the algorithm has to consider in computing new
routes,

• a list of connection requests.
National Institute of Standards and Technology 113

k shortest path

114

ly
Output parameters

• a list of new computed routes.

• a list of all routes currently set in the topology. This includes the previous
existing routes in the given topology and the new computed routes.

Pseudo code

We try to find the K shortest routes between source_node and destination_node.
The main loop of the algorithm is recursive. The structure is as follows :

begin

1. Define a set of possible routes P and a set of solutions S.
Initially P = {source_node}, S = {}

2. Look for all available links from each element of P and construct a temporary
set of paths T.

 for each route Ri in P do
 for each node j neighbor of the last node of Ri do
 tmpR = Ri + j (add the node j after the last node of Ri)
 T = T + tmpR
 end do
 end do

3. Select a minimum cost path from the temporary set T
 selected_path = get_path_of_minimum_cost_from (T)
 P = P + selected_path

4. If selected_path is a solution (i.e. the last node of selected_path is
destination_node), then S = S + selected_path.

5. Go to 2 until S has K elements.

end
National Institute of Standards and Technology

Structures and temporary formats

stance

m-

hm

sivly.
ithm.
 is :
Structures and temporary formats

The algorithm uses a class called KRoute. Each element of the set P is an in
of KRoute. The main characteristics of a KRoute are :

• ml_path:
the path used by KRoute.

• mi_cost:
the cost of ml_path. Each time a node is added to the path, the cost is reco
puted.

• ml_try:
a list of possible paths constructed as follows: during phase 2 of the algorit
(see above), each neighbor node of the last node of ml_path is added to
ml_path. The new resulting path is put in ml_try.

• mp_best_kroute
this is the element of ml_try that has the lowest cost.

A KRoute is a possible route for a given connection and is placed in the P set.

Integration in MERLiN

Path: $MERLINPATH/algorithm/routing/k_shortest_path
Category: routing
Restrictions: none

References

The k-shortest path is a common algorithm which has been studied inten
Almost every paper on the k-shortest path describes a basic form of this algor
A good starting point to find informations on operations research algorithms
http://mat.gsia.cmu.edu.
National Institute of Standards and Technology 115

k shortest path

116
 National Institute of Standards and Technology

CHAPTER 10 Tabu
earch
ave-

Abstract

The tabu algorithm is a wavelength allocation algorithm based on the tabu s
paradigm. This algorithm trie to allocate one wavelength for each route. W
length conversion is not considered along a route.

Input parameters

a description of the current topology that includes :

• a list of links

• a list of nodes (cross connects)

• a list of existing routes, that the algorithm has to consider in computing new
routes.
National Institute of Standards and Technology 117

Tabu

118

erti-

n of

h ver-
Output parameters

• a list of new computed routes.

• a list of all routes currently set on the topology.

Pseudo code

The number of neighbors the tabu algorithm look at is called neighbor_size, and is
the size of the solution table.

begin
Create a graph derived from the input topology. (This graph is a set of linked v
ces. See the part "Structures and temporary formats")

6. Make a random coloring on this graph.

7. Compute the conflicts existing and fill the conflict list whith doubles (vertex,
number of conflicts)

iteration = 0
while (size of conflict list != 0 and iteration < 1000)
 clear the solutions table
 for neighbor_size time do
 2a. p_vertex = pick a vertex in the graph
 2b. p_color = pick a color
 if ((p_vertex.current_color != p_color) AND
 (p_vertex, p_color is not in the tabu list) AND
 (p_color is available on p_vertex))
 then
 compute the number of conflicts resulting of the potential allocatio
p_color to p_vertex
 create a solution wich is the tuple (array of the color used by eac
tex, nb_conflicts)
 put this solution in the solution table
 else goto 2a
 end for
 take the best solution from the solution table
 put the best solution in the tabu list
National Institute of Standards and Technology

Structures and temporary formats

rk. In
 route.
ve at
ork

r the

x

need
 update the conflict list
 iteration++
end while
end

Structures and temporary formats

In order to allocate a wavelength, we use a graph derived from the input netwo
this graph the nodes are called vertex, and each vertex is associated with a
There is a link between two vertices if the routes they are associated with ha
least one common link. Allocating a wavelength for the routes of the input netw
is equivalent to color the derived graph. The tabu paradigm is used to colo
derived graph.

The algorithm use three structures:

1. The vertex

The attributes of a vertex are :

• mp_route
the route it is associated with.

• mi_color
The wavelength allocated to mp_route.

• ml_link
a list of the links of the route. This is used to achieve two objectives :
1 know what vertices are neighbors, i.e. they have a link in common.
2 know what wavelengths are available along the links of the route.

• ml_neighbor
a list of the vertex’s neighbors. It is used to know if the coloring of the verte
generates a conflict with its neighbors.

• mb_is_already_allocated
a boolean indicating that this route has already been allocated, so its color
not to be changed.

2. The tabusol
National Institute of Standards and Technology 119

Tabu

120

n the
ener-

r.

x is

er of

abu
 A tabusol represents a move in the tabu algorithm. A tabusol is an entry i
tabu list. This is basically one of the best choices available, i.e. a choice that g
ates the least amount of conflicts.

 The attributes of a tabusol are :

• topo
an Array which size is equal to the number of routes. Each element of it is a
color associated to a route.

3. The sol

 A sol represents a possible change of color for a vertex.
 The attributes of a sol are :

• vertex
the vertex whose color can be changed.

• color
the new color.

• conflicts
number of conflicts resulting from changing the vertex’color to the new colo

• ml_vertex_to_add
list of vertices that should be added to the conflict list if the color of the verte
changed.

• ml_vertex_to_remove
list of vertices that should be removed from the conflict list if the color of the
vertex is changed.

The algorithm use three main lists ;

1. the conflicts list
stores all vertices having the same color as their neighbor’s color.

2. the tabu list
stores every tabu "move", i.e. every best choice choosen after a given numb
iterations.

3. the solution table
this is a temporary table where the best solution is picked and put into the t
list.
National Institute of Standards and Technology

Integration in MERLiN

et as
affic

gth

l.tu-
 The size of the tabu list and the solution table is fixed to 10, but it can be s
variable parameter in order to adapt the algorithm to a given topology and tr
matrix.

Integration in MERLiN

Path: $MERLINPATH/algorithm/wavelength/tabu
Category: wavelength
Restrictions: this algorithm does a wavelength allocation without wavelen
conversion.

References

For an overview of the tabu search paradigm, see http://www.winforms.phi
bs.de/winforms/research/tabu/tabu.html
National Institute of Standards and Technology 121

Tabu

122
 National Institute of Standards and Technology

CHAPTER 11 First Fit Reconfiguration
lo-
ng to a
ting,
Abstract

The first_fit_reconf algorithm is an example of reconfiguration algorithm. It al
cates wavelengths to a set of connection requests generated overtime accordi
normal distribution. It uses the functions used by the shortest_path for the rou
and the functions used by the first_fit for the wavelength allocation.

Input parameters

The input parameters are :

 a description of the current topology containing :

• a list of links

• a list of nodes (cross connect)

• the mean value of the request arrivals

• the maximum number of connection requests generated
National Institute of Standards and Technology 123

First Fit Reconfiguration

124

tes.

nec-

distri-
Output parameters

• a list of the new computed routes.

• a list of all routes in the current topology. It includes the just computed rou

Pseudo code

begin
while (number_of_generated_connection < limit_number_of_generated-con
tion)
 set_of_connection = generate a set of connection according to a normal
bution
 number_of_generated_connection += size (set_of_connection)
 shortest_path (set_of_connection)
 first_fit (set_of_connection)
end while
end

Structures and temporary formats

There are no structures specific to this algorithm.

Integration in MERLiN

Path: $MERLINPATH/algorithm/reconfiguration/first_fit_reconf
Category: reconfiguration
Restrictions: no restriction
National Institute of Standards and Technology

	ChapterTitle - CHAPTER 1 What Is MERLiN?
	Heading1 - Management And Control Of WDM Networks
	Heading1 - Overview
	TableTitle - FIGURE 1. MERLiN Global Architecture
	TableTitle - FIGURE 2. MERLiN GUI
	Heading2 - Core
	Heading2 - Plug-ins
	TableTitle - FIGURE 3. Data Exchange in MERLiN
	TableTitle - FIGURE 4. Example of results in the Graphical User Interface

	Heading2 - Algorithms

	Heading1 - Future Extensions

	ChapterTitle - CHAPTER 2 Getting Started
	Heading1 - MERLiN Installation
	Heading1 - Directory Structure
	Heading1 - Running A Simulation
	Heading2 - Launching the daemon
	Heading2 - Using MERLiN plug-ins.
	TableTitle - FIGURE 5. Plug-in parameters

	Heading2 - Plug-in Examples

	Heading1 - Analyzing The Results

	ChapterTitle - CHAPTER 3 Configuration File
	Heading1 - File Structure
	Heading2 - Topology
	Heading2 - Action

	Heading1 - Describing The Components
	Heading2 - Node
	Heading2 - Link
	Heading2 - Connection
	Heading2 - Route
	Heading2 - Wave

	Heading1 - The Actions
	Heading1 - Example File

	ChapterTitle - CHAPTER 4 Graphical User Interface
	Heading1 - Getting started
	Heading2 - Installation requirements
	Heading2 - How to launch the Graphical User Interface?
	TableTitle - FIGURE 6. Graphical User Interface overview

	Heading2 - Shortcut Tool Bar
	TableTitle - FIGURE 7. Shortcut Tool Bar

	Heading2 - Thumbnails Overview
	FigureTitle - FIGURE 8. Thumbnails overview

	Heading2 - Getting/Setting information
	TableTitle - FIGURE 9. Information selection on components
	TableTitle - FIGURE 10. Node Properties
	TableTitle - FIGURE 11. Properties Window for a Node

	Heading2 - Status Bar
	TableTitle - FIGURE 12. Status Bar Overview

	Heading1 - Creating a configuration
	Heading2 - Creating nodes
	TableTitle - FIGURE 13. Node Name Prompt

	Heading2 - Creating Links
	Heading2 - Creating Connection Requests
	Heading2 - Deleting Nodes
	TableTitle - FIGURE 14. Delete Nodes

	Heading2 - Deleting Links
	Heading2 - Deleting Connection Requests
	Heading2 - Simulate the configuration in MERLiN

	Heading1 - Opening an existing configuration
	TableTitle - FIGURE 15. Open File Dialog Box

	Heading1 - Topology information panel
	Heading2 - Non Convert Node Thumbnail Panel
	TableTitle - FIGURE 16. Cross-Connect Non Convert Thumbnail Panel

	Heading2 - Convert Node Thumbnail Panel
	Heading2 - Link Thumbnail Panel
	TableTitle - FIGURE 17. Link Thumbnail Panel

	Heading2 - Connection Thumbnail Panel
	TableTitle - FIGURE 18. Connection Thumbnail Panel

	Heading2 - Routes Thumbnail Panel
	TableTitle - FIGURE 19. Routes Thumbnail Panel

	Heading2 - Algorithms Thumbnail Panel
	TableTitle - FIGURE 20. Algorithm Thumbnail Panel

	Heading1 - Customizing The Document Display
	Heading2 - Scroll Bars
	Heading2 - Zoom
	Heading2 - Split Panels
	Heading2 - List Management

	Heading1 - Saving A Configuration File
	Heading2 - Saving a topology
	TableTitle - FIGURE 21. Save File Dialog Box

	Heading2 - Export Performances

	Heading1 - Troubleshooting
	Heading2 - The interface hang when loading a configuration
	Heading2 - No algorithms are displayed or can be selected

	TitleBook - Part 2: Programmer’s Guide
	ChapterTitle - CHAPTER 5 Architecture Overview
	Heading1 - Core
	Heading1 - Plug-in
	Heading1 - Algorithm
	Heading1 - Communication API
	TableTitle - FIGURE 22.

	ChapterTitle - CHAPTER 6 Component Hierarchy
	Heading1 - Introduction
	Heading1 - Hierarchy
	Heading2 - Component
	TableTitle - FIGURE 23. hierarchy

	Heading2 - Math
	Heading2 - Merlin
	Heading2 - Network
	Heading2 - Parser
	Heading2 - Tool

	ChapterTitle - CHAPTER 7 The MERLiN Grammar
	Heading1 - What Is A Grammar?
	Heading1 - Description of the MERLiN Grammar
	Heading2 - Token list
	TableTitle - FIGURE 24. Tokens’ substitutes

	Heading2 - Rules list

	ChapterTitle - CHAPTER 8 Extending MERLiN
	Heading1 - The Plug-in
	Heading1 - The Algorithm
	Heading1 - Integration To MERLiN

	TitleBook - Appendices
	ChapterTitle - CHAPTER 9 k shortest path
	Heading1 - Abstract
	Heading1 - Input parameters
	Heading1 - Output parameters
	Heading1 - Pseudo code
	Numbered - 1. Define a set of possible routes P and a set of solutions S.
	Numbered - 2. Look for all available links from each element of P and construct a temporary set o...
	Numbered - 3. Select a minimum cost path from the temporary set T selected_path = get_path_of_min...
	Numbered - 4. If selected_path is a solution (i.e. the last node of selected_path is destination_...
	Numbered - 5. Go to 2 until S has K elements.

	Heading1 - Structures and temporary formats
	Heading1 - Integration in MERLiN
	Heading1 - References

	ChapterTitle - CHAPTER 10 Tabu
	Heading1 - Abstract
	Heading1 - Input parameters
	Heading1 - Output parameters
	Heading1 - Pseudo code
	Numbered - 6. Make a random coloring on this graph.
	Numbered - 7. Compute the conflicts existing and fill the conflict list whith doubles (vertex, nu...

	Heading1 - Structures and temporary formats
	Numbered1 - 1. The vertex
	Numbered - 2. The tabusol
	Numbered - 3. The sol
	Numbered1 - 1. the conflicts list stores all vertices having the same color as their neighbor’s c...
	Numbered - 2. the tabu list stores every tabu "move", i.e. every best choice choosen after a give...
	Numbered - 3. the solution table this is a temporary table where the best solution is picked and ...

	Heading1 - Integration in MERLiN
	Heading1 - References

	ChapterTitle - CHAPTER 11 First Fit Reconfiguration
	Heading1 - Abstract
	Heading1 - Input parameters
	Heading1 - Output parameters
	Heading1 - Pseudo code
	Heading1 - Structures and temporary formats
	Heading1 - Integration in MERLiN

